Skip to main content

Bioanalytical Application of Peroxidase-Mimicking DNAzymes: Status and Challenges

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 170))

Abstract

DNAzymes with peroxidase-mimicking activity are a new class of catalytically active DNA molecules. This system is formed as a complex of hemin and a G-quadruplex structure created by oligonucleotides rich in guanine. Considering catalytic activity, this DNAzyme mimics horseradish peroxidase, the enzyme most commonly used for signal generation in bioassays. Because DNAzymes exhibit many advantages over protein enzymes (thermal stability, easy and cheap synthesis and purification) they can successfully replace HRP in bioanalytical applications. HRP-like DNAzymes have been applied in the detection of several DNA sequences. Many amplification techniques have been conjugated with DNAzyme systems, resulting in ultrasensitive bioassays. On the other hand, the combination of aptamers and DNAzymes has led to the development of aptazymes for specific targets. An up-to-date summary of the most interesting DNAzyme-based assays is presented here. The elaborated systems can be used in medical diagnosis or chemical and biological studies.

This is a preview of subscription content, log in via an institution.

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ATP:

Adenosine triphosphate

BCL-2:

Regulator protein of apoptosis

C-MYC:

Regulatory gene of transcription factor

CRET:

Chemiluminescence resonance energy transfer

ELISA:

Enzyme-linked immunosorbent assay

EXPAR:

Exponential amplification reaction

G4:

G-quadruplex

HCR:

Hybridization chain reaction

HRP:

Horseradish peroxidase

LAMP:

Loop-mediated amplification

NESA:

Nicking endonuclease signal amplification

PCR:

Polymerase chain reaction

RCA:

Rolling circle amplification

RET:

Receptor tyrosine kinase

SDA:

Strand displacement amplification

SELEX:

Systematic evolution of ligand by exponential enrichment

SNP:

Single nucleotide polymorphism

TBA:

Thrombin binding aptamer

TdT:

Terminal deoxynucleotidyl transferase

TMB:

3,3′,5,5′-Tetramethylbenzidine

VEGF:

Vascular endothelial growth factor

References

  1. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 proteins. Mol Cell Biol 9:2944–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ellington ED, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  4. Kang KN, Lee YS (2013) RNA aptamers: a review of recent trends and applications. Adv Biochem Eng Biotechnol 131:153–169

    CAS  PubMed  Google Scholar 

  5. Hong P, Li W, Li J (2012) Application of sensors in clinical diagnostics. Sensors 12(2):1181–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Citartan M, Gopinath SCB, Tominaga J, Tan SC, Tang TH (2012) Assays for aptamer-based platforms. Biosens Bioelectron 34(1):1–11

    Article  CAS  PubMed  Google Scholar 

  7. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gilbert W (1986) Origin of life: the RNA world. Nature 319(6055):618

    Article  Google Scholar 

  9. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 35:849–857

    Google Scholar 

  10. Guerriertakada C, Garinder K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  Google Scholar 

  11. Breaker RR, Ronald R (1997) DNA enzymes. Nat Biotechnol 5:427–431

    Article  Google Scholar 

  12. Silverman SK, Scott K (2004) Deoxyribozymes: DNA catalysts for bioorganic chemistry. Org Biomol Chem 2(19):2701–2706

    Article  CAS  PubMed  Google Scholar 

  13. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of DNA-aptamer-hemin complex. Chem Biol 5(9):505–517

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Geyer CR, Sed D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    Article  CAS  PubMed  Google Scholar 

  15. Simonsson T (2001) G-quadruplex DNA structures variations on a theme. Biol Chem 382(4):621–628

    Article  CAS  PubMed  Google Scholar 

  16. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lam EYN, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplexe structures are stable and detectable in human genomic DNA. Nat Commun 2013(4):1796

    Article  CAS  Google Scholar 

  18. Yang C, Hurley LH (2006) Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleos Nucleot Nucl 25(8):951–968

    Article  CAS  Google Scholar 

  19. Agrawal P, Lin C, Mathad RI, Carver M, Yang D (2014) The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loopin K+ solution. J Am Chem Soc 136(5):1750–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agrawal P, Hatzakis E, Guo K, Carver M, Yang D (2013) Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 41(22):10584–10592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong X, Lan W, Zhang X, Wu H, Liu M, Cao C (2011) Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence. Nucleic Acids Res 39(15):6753–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplexes structures in human cells. Nat Chem 5:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  PubMed  Google Scholar 

  24. Phan AT, Kuryavyi V, Ma JB, Faure A, Andreola ML, Patel DJ (2005) An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci U S A 102:634–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665

    Article  CAS  PubMed  Google Scholar 

  26. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    Article  CAS  PubMed  Google Scholar 

  27. Lv L, Guo Z, Wang J, Wang E (2012) G-quadruplex as signal transducer for biorecognition events. Curr Pharm Design 18:2076–2095

    Article  CAS  Google Scholar 

  28. Kelly HC, Davies MD, Mantle D, Jones P (1977) Hydroperoxidase activities of ferrihemes: heme analogues of peroxidase enzyme intermediates. Biochemistry 16:3974–3978

    Article  PubMed  Google Scholar 

  29. Kremer ML (1967) Decomposition of hydrogen peroxide by hemin. Trans Faraday Soc 61:1453–1459

    Article  Google Scholar 

  30. Johnstone RAW, Simpson AJ, Stocks PA (1997) Porphyrins in aqueous amphiphilic polymers as peroxidase mimics. Chem Commun 23:2277–2278

    Article  Google Scholar 

  31. Kong DM, Cai LL, Guo JH, Wu J, Shen HX (2008) Characterization of the G-quadruplex structure of a catalytic DNA with peroxidase activity. Biopolymers 91(5):331–339

    Article  CAS  Google Scholar 

  32. Kong DM, Wu J, Wang N, Yang W, Shen HX (2009) Peroxidase activity-structure relationship of the intermolecular four-stranded G-quadruplex-hemin complexes and their application in Hg2+ ion detection. Talanta 80:459–465

    Article  CAS  PubMed  Google Scholar 

  33. Kong DM, Yang W, Wu J, Li CX, Shen HX (2010) Structure-function study of peroxidase-like G-quadruplexe-hemin complexes. Analyst 135:321–326

    Article  CAS  PubMed  Google Scholar 

  34. Travascio P, Witting PK, Mauk AG, Sen D (2001) The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123:1337–1348

    Article  CAS  PubMed  Google Scholar 

  35. Travascio P, Sen D, Bennet AJ (2006) DNA and RNA enzymes with peroxidase activity – an investigation into the mechanism of action. Can J Chem 84:613–619

    Article  CAS  Google Scholar 

  36. Majahi PR, Shafer RH (2006) Characterization of the unusual folding pattern in a catalytically active guanine quadruplex structure. Biopolymers 82(6):558–569

    Article  CAS  Google Scholar 

  37. Cheng X, Liu X, Bing T, Cao Z, Shangguan D (2009) General peroxidase activity of G-quadruplex-hemin complexes and its application on ligand screening. Biochemistry 48:7817–7823

    Article  CAS  PubMed  Google Scholar 

  38. Kosman J, Juskowiak B (2016) Hemin/G-quadruplex structure and activity alteration induced by magnesium cations. Int J Biol Macromol 85:555–564

    Article  CAS  PubMed  Google Scholar 

  39. Mergny JL, Phan AT, Lacroix L (1998) Following G-quartet formation by UV-Vis spectroscopy. FEBS Lett 435(1):74–78

    Article  CAS  PubMed  Google Scholar 

  40. Vorlickova M, Klejnovska I, Sagi J, Renciuk D, Bednarova K, Motlova J, Kypr J (2012) Circular dichroism and guanine quadruplexes. Methods 57(1):64–75

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Kinoshita M, Katahira Y, Shimizu H, Di Y, Shibata T, Tai H, Suzuki A, Neya S (2015) Characterization of heme-DNA complexes composed of some chemically modified hemes and parallel G-quadruplex DNAs. Biochemistry 54(49):7168–7177

    Article  CAS  PubMed  Google Scholar 

  42. Everse J, Johnson M, Marini M (1994) Methods in enzymology vol. 231, hemoglobins, Part B, biochemical and analytical methods. Academic Press, San Diego, pp. 547–561

    Book  Google Scholar 

  43. Poon L, Methot S, Morabi-Pazooki W, Pio F, Bennet A, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 11:1877–1884

    Article  CAS  Google Scholar 

  44. Yang X, Fang C, Mei H, Chang T, Cao Z, Shangguan D (2011) Characterization of G-quadruplex/hemin peroxidase: substrate specificity and inactivation kinetics. Chem Eur J 17:14475–14484

    Article  CAS  PubMed  Google Scholar 

  45. Nakayama S, Sintim HO (2009) Colorimetric split G-quadruplexes probes for nucleic acid sensing: improving reconstituted DNAzyme’s catalytic efficiency vie probe remodeling. J Am Chem Soc 131:10320–10333

    Article  CAS  PubMed  Google Scholar 

  46. Nakayama S, Sintim HO (2012) Investigating the interactions between cations, peroxidation substrates and G-quadruplex topology in DNAzyme peroxidation reactions using statistical testing. Anal Chim Acta 747:1–6

    Article  CAS  PubMed  Google Scholar 

  47. Kong DM, Xu J, Shen HX (2010) Positivie effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Anal Chem 82:6148–6153

    Article  CAS  PubMed  Google Scholar 

  48. Jia SM, Liu XF, Kong DM, Shen XH (2012) A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2′-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS–H2O2 system. Biosens Bioelectron 35:407–412

    Article  CAS  PubMed  Google Scholar 

  49. Stefan L, Denat F, Monchaud D (2012) Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res 40(17):8759–8772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qi C, Zhang N, Yan J, Liu X, Bing T, Mei H, Shangguan D (2014) Activity enhancement of G-quadruplex/hemin DNAzyme spermine. RSC Adv 4:1441–1448

    Article  CAS  Google Scholar 

  51. Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind hemin robustly catalyse oxygen transfer reactions. J Am Chem Soc 133:1877–1884

    Article  CAS  PubMed  Google Scholar 

  52. Golub E, Freeman R, Willner I (2011) A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed 50:1–6

    Article  CAS  Google Scholar 

  53. Yuan Y, Yuan R, Chai Y, Zhuo Y, Ye X, Gan X, Bai L (2012) Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun 48:4621–4623

    Article  CAS  Google Scholar 

  54. Chang T, Gong H, Ding P, Liu X, Li W, Bing T, Cao Z, Shangguan D (2016) Activity ehancment of G-quadruplex/hemin DNAzyme by Flanking d(CCC). Chem Eur J 22:4015–4021

    Article  CAS  PubMed  Google Scholar 

  55. Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao Z (2016) Insight into G-quadruplex-hemin DNAzyme/RNAzyme adjacent adenine as the intermolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 44(15):7373–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fruk L, Niemeyer CM (2006) Covalent hemin-DNA adducts for generating a novel class of artificial heme enzymes. Angew Chem Int Ed 44:2603–2606

    Article  CAS  Google Scholar 

  57. Nakayama S, Wang J, Sintim HO (2011) DNA-based peroxidation catalyst-what is the exact role of topology on catalysis and is there a special binding site for catalysis? Chem Eur J 17:5691–5698

    Article  CAS  PubMed  Google Scholar 

  58. Gribas AV, Korolev SP, Zatsepin TS, Gottikh MB, Sakharov IY (2015) Structure-activity relationship study for design of highly activr covalent peroxidase-mimicking DNAzyme. RSC Adv 5:51672–51677

    Article  CAS  Google Scholar 

  59. Gribas AV, Korolev SP, Zatsepin TS, Gottikh MB, Sakharov IY (2016) Suicide inactivation of covalent peroxidase-mimicking DNAzyme with hydrogen peroxide and its protection by a reductant substrate. Talanta 155:212–215

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Zhao J, Bao J, Dai Z (2016) Construction of metal-ion-free G-quadruplex-hemin DNAzyme and its application in S1 nuclease detection. ACS Appl Mater Interfaces 8:827–833

    Article  PubMed  CAS  Google Scholar 

  61. Xiao L, Zhou Z, Feng M, Tong A, Xiang Y (2016) Cationic peptide conjugation enhances the activity of peroxidase-mimicking DNAzymes. Bioconjug Chem 27:621–627

    Article  CAS  PubMed  Google Scholar 

  62. Abe H, Abe N, Shibata A, Ito K, Tanaka Y, Ito M, Saneyoshi H, Shuto S, Ito Y (2012) Structure formation and catalytic activity of DNA dissolved in organic solvents. Angew Chem Int Ed Engl 51:6475–6479

    Article  CAS  PubMed  Google Scholar 

  63. Li C, Zhu L, Zhu Z, Fu H, Jenkins G, Wang C, Zou Y, Lu X, Yang CJ (2012) Backbone modifications promotes peroxidase activity of G-quadruplex-based DNAzyme. Chem Commun 48:8347–8349

    Article  CAS  Google Scholar 

  64. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I (2004) Catalytic beacons for the detection of DNA and telomerase activity. J Am Chem Soc 126:7430–7431

    Article  CAS  PubMed  Google Scholar 

  66. Guo Q, Bao Y, Yang X, Wang K, Wang Q, Tan Y (2010) Amplified electrochemical DNA sensor using peroxidase-like DNAzyme. Talanta 83:500–504

    Article  CAS  PubMed  Google Scholar 

  67. Freeman R, Liu X, Willner I (2011) Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) detection of DNA, metal ions, and aptamer – substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604

    Article  CAS  PubMed  Google Scholar 

  68. McKeating KS, Graham D, Faulds K (2013) Resonance Raman scattering of catalytic beacons for DNA detection. Chem Commun 49:3206–3208

    Article  CAS  Google Scholar 

  69. Kosman J, Wu YT, Gluszynska A, Juskowiak B (2014) N-Methyl-4-hydrazino-7-nitrobenzofurazan: a fluorogenic substrate for peroxidase-like DNAzyme, and its potential application. Anal Bioanal Chem 406:7049–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deng S, Cheng L, Lei J, Cheng Y, Huang Y, Ju H (2013) Label-free electrochemiluminescent detection of DNA by hybridization with a molecular beacon to form hemin/G-quadruplex architecture for signal inhibition. Nanoscale 5:5435–5441

    Article  CAS  PubMed  Google Scholar 

  71. Golub E, Freeman R, Niazov A, Hu J (2011) Hemin/G-quadruplexes as DNAzymes for the fluorescent detection of DNA, aptamer–thrombin complexes, and probing the activity of glucose oxidase. Analyst 136:4397–4401

    Article  CAS  PubMed  Google Scholar 

  72. Bi S, Jia X, Dong Y (2015) A hot-spot magnetic graphene oxide substrate for microRNA detection based on cascade chemiluminescence resonance energy transfer. Nanoscale 7:3745–3753

    Article  CAS  PubMed  Google Scholar 

  73. Zheng Z, Han J, Pang W, Hu J (2013) G-quadruplex DNAzyme molecular beacon for amplified colorimetric biosensing of Pseudostellaria heterophylla. Sensors 13:1064–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu N, Shao C, Deng Z (2008) Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chem Commun 46:6161–6163

    Google Scholar 

  75. Deng M, Zhang D, Zhou Y, Zhou X (2008) Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 130(39):13095–13102

    Article  CAS  PubMed  Google Scholar 

  76. Deng M, Feng S, Luo F, Wang S, Sun X, Zhou X, Zhang XL (2012) Visual detection of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis strains by use of an asymmetrically split peroxidase DNAzyme. J Clin Micriobiol 50(11):3443–3450

    Article  CAS  Google Scholar 

  77. Nakayama S, Sintim HO (2013) Detection of single-stranded nucleic acids via colorimetric means, using G-quadruplex probes. Methods Mol Biol 1039:153–159

    Article  PubMed  CAS  Google Scholar 

  78. Jiang X, Zhang H, Wu J, Yang X, Shao J, Lu Y, Qiu B, Lin Z, Chen G (2014) G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta 128:445–449

    Article  CAS  PubMed  Google Scholar 

  79. Fan D, Zhu J, Zhai Q, Wang E, Dong S (2016) Cascade DNA logic programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. Chem Commun 52:3766–3769

    Article  CAS  Google Scholar 

  80. Tian Y, Mao C (2006) Cascade signal amplification for DNA detection. Chembiochem 7:1862–1864

    Article  CAS  PubMed  Google Scholar 

  81. Koster DM, Haselbach D, Lehrach H, Seitz H (2011) A DNAzyme based label-free detection system for miniaturized assays. Mol BioSyst 7:2882–2889

    Article  PubMed  CAS  Google Scholar 

  82. Dong H, Wang C, Xiong Y, Lu H, Ju H, Zhang X (2013) Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Biosens Bioelectron 41:348–353

    Article  CAS  PubMed  Google Scholar 

  83. Bi S, Li L, Zhang S (2010) Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem 82(22):9447–9454

    Article  CAS  PubMed  Google Scholar 

  84. Wen Y, Xu Y, Mao X, Wei Y, Song H, Chen N, Huang Q, Fan C, Li D (2012) DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Anal Chem 84(18):7664–7669

    Article  CAS  PubMed  Google Scholar 

  85. Weizmann Y, Cheglakov Z, Willner I (2008) A Fok I/DNA machine that duplicates its analyte gene sequence. J Am Chem Soc 130:17224–17225

    Article  CAS  PubMed  Google Scholar 

  86. Du F, Tang Z (2011) Colrimetric detection of PCR product with DNAzymes induced by 5′-nuclease activity of DNA polymerases. Chembiochem 12:43–46

    Article  CAS  PubMed  Google Scholar 

  87. Li J, Yao QH, Fu HE, Zhang XL, Yang HH (2011) High sensitive and label-free colorimetric DNA detection based on nicking endonuclease-assisted activation of DNAzymes. Talanta 85:91–96

    Article  CAS  PubMed  Google Scholar 

  88. Fu R, Li T, Lee SS, Park HG (2011) DNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids. Anal Chem 83:494–500

    Article  CAS  PubMed  Google Scholar 

  89. Zhou Z, Du Y, Zhang L, Dong S (2012) A label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosens Bioelectron 34:100–105

    Article  CAS  PubMed  Google Scholar 

  90. Xiao HJ, Hak HC, Kong DM, Shen HX (2012) Sequence-specific detection of nucleic acids utilizing isothermal enrichment of G-quadruplex DNAzymes. Anal Chim Acta 729:67–72

    Article  CAS  PubMed  Google Scholar 

  91. Li H, Wu Z, Qiu L, Liu J, Wang C, Shen G, Yu R (2013) Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. Biosens Bioelectron 50:180–185

    Article  CAS  PubMed  Google Scholar 

  92. Seok Y, Byun JY, Mun H, Kim MG (2014) Colorimetric detection of PCR products of DNA from pathogenic targets based on simultaneously amplified DNAzyme. Microchim Acta 181:1965–1971

    Article  CAS  Google Scholar 

  93. Koo KM, Wee EJH, Rauf S, Shiddiky MJA, Trau M (2014) Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosens Bioelectron 56:278–285

    Article  CAS  PubMed  Google Scholar 

  94. Nie J, Zhang DW, Tie C, Zhou YL, Zhang XX (2014) G-quadruplex based two-stage isothermal exponential amplification reaction for label-free DNA colorimetric detection. Biosens Bioelectron 56:237–242

    Article  CAS  PubMed  Google Scholar 

  95. Chen J, Huang Y, Vdovenko M, Sakharov IY, Su G, Zhao S (2015) An enhanced chemiluminescence resonance energy transfer system based on target recycling G-quadruplex/hemin DNAzyme catalysis and its application in ultrasensitive detection of DNA. Talanta 183:59–63

    Article  CAS  Google Scholar 

  96. Xu J, Qian J, Li H, Wu ZS, Shen W, Jia L (2016) Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids. Biosens Bioelectron 75:41–47

    Article  CAS  PubMed  Google Scholar 

  97. Xu Y, Li D, Cheng W, Hu R, Sang Y, Yin Y, Ding S, Ju H (2016) Chemiluminescence imaging for microRNA detection based on cascade exponential amplification machinery. Anal Chim Acta 936:229–235

    Article  CAS  PubMed  Google Scholar 

  98. Wu H, Liu Y, Wang H, Zhu F, Zou P (2016) Label-free and enzyme-free colorimetric detection of microRNA by catalysed hairpin assembly coupled with hybridization chain reaction. Biosens Bioelectron 81:303–308

    Article  CAS  PubMed  Google Scholar 

  99. Elbaz J, Moshe M, Shlyahovsky B, Willner I (2009) Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors. Chem Eur J 15:3411–3418

    Article  CAS  PubMed  Google Scholar 

  100. Liu X, Freeman R, Golub E, Willner I (2011) Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5(9):7648–7655

    Article  CAS  PubMed  Google Scholar 

  101. Golub E, Niazov A, Freeman R, Zatsepin M, Willner I (2012) Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using hemin/G quadruplex-stimulated Chemiluminescence Resonance Energy Transfer (CRET) generation of photocurrents. J Phys Chem C 116:13827–13834

    Article  CAS  Google Scholar 

  102. Hu L, Liu X, Cecconello A, Willner I (2014) Dual switchable CRET-induced luminescence of CdSe/ZnS Quantum Dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett 14:6030–6035

    Article  CAS  PubMed  Google Scholar 

  103. Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Development of an electrochemical sensor based on the catalysis of ferrocene actuated hemin/G-quadruplex enzyme for the detection of potassium ions. Biosens Bioelectron 61:410–416

    Article  CAS  PubMed  Google Scholar 

  104. Xu M, Zhuang J, Chen X, Chen G, Tang G (2013) A difunctional DNA–AuNP dendrimer coupling DNAzyme with intercalators for femtomolar detection of nucleic acids. Chem Commun 49:7304–7306

    Article  CAS  Google Scholar 

  105. Li T, Wang E, Dong S (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 31:3654–3656

    Article  CAS  Google Scholar 

  106. Li T, Wang E, Dong S (2008) Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. Chem Commun 43:5520–5522

    Article  CAS  Google Scholar 

  107. Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, Ruaan RC, Chen WY (2008) Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem 80:6580–6586

    Article  CAS  PubMed  Google Scholar 

  108. Higuchi A, Yang ST, Siao YD, Hsieh PV, Fukushima H, Chang Y, Chen WY (2009) Preparation of fractioned DNA aptamer-PT complex through ultrafiltration and the colorimetric sensing of thrombin. J Membr Sci 328:97–103

    Article  CAS  Google Scholar 

  109. Zhou J, Li T, Hu J, Wang E (2010) A novel dot-blot DNAzyme-linked aptamer assay for protein detection. Anal Bioanal Chem 397:2923–2927

    Article  CAS  Google Scholar 

  110. Shen B, Wang Q, Zhu D, Luo J, Cheng G, He P, Fang Y (2010) G-quadruplex-based DNAzymes aptasensors for the amplified detection of thrombin. Electroanalysis 22(24):2985–2990

    Article  CAS  Google Scholar 

  111. Yuan Y, Guo X, Yuan R, Chai Y, Zhou Y, Mao L, Gan X (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240

    Article  CAS  PubMed  Google Scholar 

  112. Bai L, Yuan R, Chai Y, Yuan Y, Zhuo Y, Mao L (2011) Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens Bioelectron 26:4331–4336

    Article  CAS  PubMed  Google Scholar 

  113. Jiang L, Yuan R, Chai Y, Yuan Y, Bai Y, Wang Y (2012) An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidasemimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods. Analyst 138:1497–1503

    Article  CAS  Google Scholar 

  114. Xie S, Chai Y, Yuan Y, Bai L, Yuan R (2014) A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires. Anal Chim Acta 832:51–57

    Article  CAS  PubMed  Google Scholar 

  115. Sun A, Qi Q, Wang X, Bie P (2014) Porous platinum nanotubes labelled with hemin/G-quadruplex based electrochemical aptasensor for sensitive thrombin analysis via the cascade signal amplification. Biosens Bioelectron 57:16–21

    Article  CAS  PubMed  Google Scholar 

  116. Xiao L, Chai Y, Yuan R, Wang H, Bai L (2014) Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Analyst 139:1030–1036

    Article  CAS  PubMed  Google Scholar 

  117. Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268(24):17651–17654

    CAS  PubMed  Google Scholar 

  118. Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4(9):1683–1687

    Article  CAS  Google Scholar 

  119. Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I (2004) Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acids labels. Anal Chem 76(7):2152–2156

    Article  CAS  PubMed  Google Scholar 

  120. Li T, Shi L, Wang E, Dong S (2009) Multifunctional G-quadruplex aptamers and their application to protein detection. Chem Eur J 15:1036–1042

    Article  CAS  PubMed  Google Scholar 

  121. Zhou WH, Zhu CL, Lu CH, Guo X, Chen F, Yang HH, Wang X (2009) Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes. Chem Commun 44:6845–6847

    Article  CAS  Google Scholar 

  122. Freeman R, Sharon E, Teller C, Henning A, Tzfati Y, Willner I (2010) DNAzyme-like activity of hemin–telomeric G-quadruplexes for the optical analysis of telomerase and its inhibitors. Chembiochem 11(17):2362–2367

    Article  CAS  PubMed  Google Scholar 

  123. Stefan L, Denat F, Monchaud D (2011) Deciphering the DNAzyme activity of multimeric quadruplexes: insights into their actual role in the telomerase activity evaluation assay. J Am Chem Soc 133(50):20405–20415

    Article  CAS  PubMed  Google Scholar 

  124. Wang C, Wu J, Zong C, Ju H, Yan F (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136:4295–4300

    Article  CAS  PubMed  Google Scholar 

  125. Tang L, Liu Y, Ali MM, Kang DK, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84:4711–4717

    Article  CAS  PubMed  Google Scholar 

  126. Liu J, Lu CY, Zhou H, Xu JJ, Wang ZH, Chen HY (2013) A dual-functional electrochemical biosensor for the detection of prostate specific antigen and telomerase activity. Chem Commun 49:6602–6604

    Article  CAS  Google Scholar 

  127. Jou AF, Lu CH, Ou YC, Wang SS, Hsu SL, Willner I, Ho JA (2014) Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase. Chem Sci 6:659–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zhou W, Su J, Chai Y, Yuan R, Xiang Y (2014) Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications. Biosens Bioelectron 53:494–498

    Article  CAS  PubMed  Google Scholar 

  129. Hou L, Gao Z, Xu M, Cao X, Wu X, Chen G, Tang D (2014) DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosens Bioelectron 54:365–371

    Article  CAS  PubMed  Google Scholar 

  130. Li H, Fu HW, Zhao T, Kong DM (2015) Simple, PCR-free telomerase activity detection using G-quadruplex-hemin DNAzyme. RSC Adv 5:6475–6480

    Article  CAS  Google Scholar 

  131. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal calls and cancer. Science 266:2011–2015

    Article  CAS  PubMed  Google Scholar 

  132. Li W, Liu Z, Lin H, Nie Z, Chen J, Xu X, Yao S (2010) Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Anal Chem 82:1935–1941

    Article  CAS  PubMed  Google Scholar 

  133. Zhu C, Wen Y, Peng H, Long Y, He Y, Huang Q, Li D, Fan C (2011) A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis. Anal Bioanal Chem 399:3459–3464

    Article  CAS  PubMed  Google Scholar 

  134. Zeng Y, Hu J, Long Y, Zhang C (2013) Sensitive detection of DNA methyltransferase using hairpin probe-based primer generation rolling circle amplification-induced chemiluminescence. Anal Chem 85:6143–6150

    Article  CAS  PubMed  Google Scholar 

  135. Liu SC, Wu HW, Jiang JJ, Shen GL, Yu RG (2013) A novel DNAzyme-based colorimetric assay for the detection of hOGG1 activity with lambda exonuclease cleavage. Anal Methods 5:164–168

    Article  CAS  Google Scholar 

  136. He K, Li W, Nie Z, Huang Y, Liu Z, Nie L, Yao S (2012) Enzyme-regulated activation of DNAzyme: a novel strategy for a label-free colorimetric DNA ligase assay and ligase-based biosensing. Chem Eur J 18:3992–3999

    Article  CAS  PubMed  Google Scholar 

  137. Jiang HX, Kong DM, Shen HX (2014) Amplified detection of DNA ligase and polynucleotide kinase/phosphatase on the basis of enrichment of catalytic G-quadruplex DNAzyme by rolling circle amplification. Biosens Bioelectron 55:133–138

    Article  CAS  PubMed  Google Scholar 

  138. Zhou Z, Peng L, Wang X, Xiang Y, Tong A (2014) A new colorimetric strategy for monitoring caspase 3 activity by HRP-mimicking DNAzyme–peptide conjugates. Analyst 139:1178–1183

    Article  CAS  PubMed  Google Scholar 

  139. Liu Z, Li W, Nie Z, Peng F, Huang Y, Yao S (2014) Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity. Chem Commun 50:6875–6878

    Article  CAS  Google Scholar 

  140. Jiang C, Yan C, Jiang J, Yu R (2013) Colorimetric assay for T4 polynucleotide kinase activity based on the horseradish peroxidase-mimicking DNAzyme combined with λ exonuclease cleavage. Anal Chim Acta 766:88–93

    Article  CAS  PubMed  Google Scholar 

  141. Shi B, Qin Y, Huang M, Zhao J, Su Y, Zhao S (2015) A G-quadruplex-based colorimetric assay of S1 nuclease activity and inhibition. Anal Methods 7:5600–5605

    Article  CAS  Google Scholar 

  142. Li T, Wang E, Dong S (2009) G-quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection. Chem Commun 5:580–582

    Article  Google Scholar 

  143. Fan X, Li H, Zhao J, Lin F, Zhang L, Zhang Y, Yao S (2012) A novel label-free fluorescent sensor for the detection of potassium ion based on DNAzyme. Talanta 89:57–62

    Article  CAS  PubMed  Google Scholar 

  144. Wang H, Wang DM, Gao MX, Wang J, Huang CZ (2014) Potassium-induced G-quadruplex DNAzyme as a chemiluminescent sensing platform for highly selective detection of K+. Anal Methods 6:7415–7419

    Article  CAS  Google Scholar 

  145. Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149

    Article  CAS  PubMed  Google Scholar 

  146. Hao Y, Guo Q, Wu H, Guo L, Zhong L, Wang J, Lin T, Fu F, Chen G (2014) Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires. Biosens Bioelectron 52:261–264

    Article  CAS  PubMed  Google Scholar 

  147. Tang X, Wang YS, Xue JH, Zhou B, Cao JX, Chen SH, Li MH, Wang XF, Zhu YF, Huang YQ (2015) A novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer. J Pharm Biomed Anal 107:258–264

    Article  CAS  PubMed  Google Scholar 

  148. Zhou XH, Kong DM, Shen HX (2010) G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal Chim Acta 678:124–127

    Article  CAS  PubMed  Google Scholar 

  149. Zhou XH, Kong DM, Shen HX (2010) Ag+ and cysteine quantitation based on G-quadruplex-hemin disruption by Ag+. Anal Chem 82:789–793

    Article  CAS  PubMed  Google Scholar 

  150. Zhang K, Wang K, Zhu X, Xie M (2015) Sensitive and selective amplified detection of silver ion based on NEase-aided target recycling. RSC Adv 5:89047–89051

    Article  CAS  Google Scholar 

  151. Liu G, Yuan Y, Wang J (2016) Hemin/G-quadruplex DNAzyme nanowires amplified luminol electrochemiluminescence system and its application in sensing silver ions. RSC Adv 6:37221–37225

    Article  CAS  Google Scholar 

  152. Elbaz J, Shlyahovsky B, Willner I (2008) A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem Commun 13:1569–1571

    Article  CAS  Google Scholar 

  153. Wang Y, Wang J, Yang F, Yang X (2010) Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171:195–201

    Article  CAS  Google Scholar 

  154. Li F, Yang L, Chen M, Qian Y, Tang B (2013) A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed template-guided deposition of polyaniline. Biosens Bioelectron 41:903–906

    Article  CAS  PubMed  Google Scholar 

  155. Wang H, Wang DM, Huang CZ (2015) Highly sensitive chemiluminescent detection of lead ion based on its displacement of potassium in G-quadruplex DNAzyme. Analyst 140:5742–5747

    Article  CAS  PubMed  Google Scholar 

  156. Zhu X, Gao X, Liu Q, Lin Z, Qiu B, Chen G (2011) Pb2+-introduced activation of horseradish peroxidase (HRP)-mimicking DNAzyme. Chem Commun 47:7437–7439

    Article  CAS  Google Scholar 

  157. Zhou Q, Lin Y, Wei Q, Chen G, Tang D (2016) Highly sensitive electrochemical sensing platform for lead ion based on synergetic catalysis of DNAzyme and Au–Pd porous bimetallic nanostructures. Biosens Bioelectron 78:236–243

    Article  CAS  PubMed  Google Scholar 

  158. Xue S, Jing P, Xu W (2016) Hemin on graphene nanosheets functionalized with flower-like MnO2 and hollow AuPd for the electrochemical sensing lead ion based on the specific DNAzyme. Biosens Bioelectron 86:958–965

    Article  CAS  PubMed  Google Scholar 

  159. Teller C, Shimron S, Willner I (2009) Aptamer-DNAzyme hairpins for amplified biosensing. Anal Chem 81:9114–9119

    Article  CAS  PubMed  Google Scholar 

  160. Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Prussian blue-Au nanocomposites actuated hemin/G-quadruplexes catalysis for amplified detection of DNA, Hg2+ and adenosine triphosphate. Analyst 139:5297–5303

    Article  CAS  PubMed  Google Scholar 

  161. Wang G, Chen L, Zhu Y, Wang L, Zhang X (2014) Adenosine triphosphate sensing by electrocatalysis with DNAzyme. Electroanalysis 26:312–318

    Article  CAS  Google Scholar 

  162. Chu Z, Zhang L, Huang Y, Zhao S (2014) A G-quadruplex DNAzyme chemiluminescence aptasensor based on the target triggered DNA recycling for sensitive detection of adenosine. Anal Methods 6:3700–3705

    Article  CAS  Google Scholar 

  163. Wu Q, Shen H, Sun Y, Song L (2016) Study on sensing strategy and performance of a microfluidic chemiluminescence aptazyme sensor. Talanta 150:531–538

    Article  CAS  PubMed  Google Scholar 

  164. Yang C, Lates V, Prieto-Simon B, Marty JL, Yang X (2012) Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Biosens Bioelectron 32:208–212

    Article  CAS  PubMed  Google Scholar 

  165. Yang C, Lates V, Prieto-Simon B, Marty JL, Yang X (2013) Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta 116:520–526

    Article  CAS  PubMed  Google Scholar 

  166. Shim WB, Mun H, Joung HA, Ofori JA, Chung DW, Kim MG (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36:30–35

    Article  CAS  Google Scholar 

  167. Mun H, Jo EJ, Li T, Joung HA, Hong DG, Shim WB, Jung C, Kim MG (2014) Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Biosens Bioelectron 58:308–313

    Article  CAS  PubMed  Google Scholar 

  168. Wang C, Dong X, Liu Q, Wang K (2015) Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal Chim Acta 860:83–88

    Article  CAS  PubMed  Google Scholar 

  169. Seok Y, Byun JY, Shim WB, Kim MG (2015) A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta 886:182–187

    Article  CAS  PubMed  Google Scholar 

  170. Jo EJ, Mun H, Kim SJ, Shim WB, Kim MG (2015) Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem 194:1102–1107

    Article  PubMed  CAS  Google Scholar 

  171. Zhang DW, Nie J, Zhang FT, Xu L, Zhou YL, Zhang XX (2013) Novel homogeneous label-free electrochemical aptasensor based on functional DNA hairpin for target detection. Anal Chem 85:9378–9382

    Article  CAS  PubMed  Google Scholar 

  172. Nie J, Zhang DW, Tie C, Zhou YL, Zhang XX (2014) A label-free DNA hairpin biosensor for colorimetric detection of target with suitable functional DNA partners. Biosens Bioelectron 49:236–242

    Article  CAS  Google Scholar 

  173. Hou T, Li C, Wang X, Zhao C, Li F (2013) Label-free colorimetric detection of coralyne utilizing peroxidase-like split G-quadruplex DNAzyme. Anal Methods 5:4671–4674

    Article  CAS  Google Scholar 

  174. Hou T, Wang X, Liu S, Du Z, Li F (2013) A label-free and colorimetric turn-on assay for coralyne based on coralyne-induced formation of peroxidase-mimicking split DNAzyme. Analyst 138:4728–4731

    Article  CAS  PubMed  Google Scholar 

  175. Zhang H, Jiang B, Xiang Y, Chai Y, Yuan R (2012) Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst 137:1020–1023

    Article  CAS  PubMed  Google Scholar 

  176. Zhou W, Gong X, Xiang Y, Yuan R, Chai Y (2013) Target-triggered quadratic amplification for label-free and sensitive visual detection of cytokines based on hairpin aptamer DNAzyme probes. Anal Chem 86:953–958

    Article  PubMed  CAS  Google Scholar 

  177. Omar N, Loh Q, Tye GJ, Choong YS, Noordin R, Gloker J, Lim TS (2014) Development of an antigen-DNAzyme based probe for a direct antibody-antigen assay using the intrinsic DNAzyme activity of a daunomycin aptamer. Sensors 14:346–355

    Article  CAS  Google Scholar 

  178. Bo H, Wang C, Gao Q, Zhang C (2013) Selective, colorimetric assay of glucose in urine using G-quadruplex-based DNAzymes and 10-acetyl-3,7-dihydroxy phenoxazine. Talanta 108:131–135

    Article  CAS  PubMed  Google Scholar 

  179. Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I (2014) Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures. Chem Eur J 20:16203–16209

    Article  CAS  PubMed  Google Scholar 

  180. Yang DK, Kou CJ, Chen LC (2015) Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Anal Chim Acta 856:96–102

    Article  CAS  PubMed  Google Scholar 

  181. Li R, Xiong C, Xiao Z, Ling L (2012) Colorimetric detection of cholesterol with G-quadruplex-based DNAzymes and ABTS2−. Anal Chim Acta 724:80–85

    Article  CAS  PubMed  Google Scholar 

  182. Wang M, Han Y, Nie Z, Lei C, Huang Y, Gou M, Yao S (2010) Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosens Bioelectron 26:523–529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kosman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kosman, J., Juskowiak, B. (2017). Bioanalytical Application of Peroxidase-Mimicking DNAzymes: Status and Challenges. In: Seitz, H., Stahl, F., Walter, JG. (eds) Catalytically Active Nucleic Acids. Advances in Biochemical Engineering/Biotechnology, vol 170. Springer, Cham. https://doi.org/10.1007/10_2017_7

Download citation

Publish with us

Policies and ethics