Skip to main content

Tunable Protein Hydrogels: Present State and Emerging Development

  • Chapter
  • First Online:
Tunable Hydrogels

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 178))

Abstract

In recent years, protein and peptide-based hydrogels have received great attention for applications in biomedicine. Compared to hydrogels based on synthetic materials, they have the decisive advantages of being biological origin, providing cells with a more in vivo-like microenvironment and possessing potential biological activity. Empowered by the steadily deepened understanding of the sequence-structure-function relationship of natural proteins and the rapid development of molecular-biological tools for accurate protein sequence editing, researchers have developed a series of recombinant proteins as building blocks and responsive blocks to design novel functional hydrogels. The use of multi-block design further expands the customizability of protein hydrogels. With the improvement of standardization of preparation and testing methods, protein hydrogels are expected to be widely used in medical treatment, skin care, artificial organs and wearable electronic devices. More recently, the emergence of catalytically active protein hydrogel brings new opportunities for applications of protein hydrogels. It is believed that through integrated approaches of engineering biology and materials sciences novel and hereto unthinkable protein hydrogels and properties may be generated for applications in areas beyond medicine and health, including biotechnology, food and agriculture, and even energy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines. Mater Today 36:102–124

    Article  CAS  Google Scholar 

  2. Cao Y, Mezzenga R (2020) Design principles of food gels. Nat Food 1(2):106–118

    Article  Google Scholar 

  3. Liu C, Lei F, Li P, Jiang J, Wang K (2020) Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym 236:116100

    Article  CAS  PubMed  Google Scholar 

  4. Song B, Liang H, Sun R, Peng P, Jiang Y, She D (2020) Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol 144:219–230

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  6. Palmese LL, Thapa RK, Sullivan MO, Kiick KL (2019) Hybrid hydrogels for biomedical applications. Curr Opin Chem Eng 24:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12)

    Google Scholar 

  8. Motte S, Kaufman LJ (2013) Strain stiffening in collagen I networks. Biopolymers 99(1):35–46

    Article  CAS  PubMed  Google Scholar 

  9. Antoine EE, Vlachos PP, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS One 10(3):e0122500

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang K, Sun J, Guo Z, Yang J, Wei D, Tan Y, Guo L, Luo H, Fan H, Zhang X (2018) Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J Mater Chem B 6(45):7543–7555

    Article  CAS  PubMed  Google Scholar 

  11. Liu A, Wu K, Chen S, Wu C, Gao D, Chen L, Wei D, Luo H, Sun J, Fan H (2020) Tunable fast relaxation in imine-based nanofibrillar hydrogels stimulates cell response through TRPV4 activation. Biomacromolecules 21(9):3745–3755

    Article  CAS  PubMed  Google Scholar 

  12. Whittaker JL, Choudhury NR, Dutta NK, Zannettino A (2014) Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J Mater Chem B 2(37):6259–6270

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Zheng Z, Yang Y, Fang G, Yao J, Shao Z, Chen X (2016) Robust protein hydrogels from silkworm silk. ACS Sustain Chem Eng 4(3):1500–1506

    Article  CAS  Google Scholar 

  14. Zhu Z, Ling S, Yeo J, Zhao S, Tozzi L, Buehler MJ, Omenetto F, Li C, Kaplan DL (2018) High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv Funct Mater 28(10)

    Google Scholar 

  15. Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S (2019) Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 134:838–845

    Article  CAS  PubMed  Google Scholar 

  16. Buitrago JO, Patel KD, El-Fiqi A, Lee JH, Kundu B, Lee HH, Kim HW (2018) Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater 69:218–233

    Article  CAS  PubMed  Google Scholar 

  17. Roberts S, Harmon TS, Schaal JL, Miao V, Li KJ, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV, Chilkoti A (2018) Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17(12):1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghoorchian A, Simon JR, Bharti B, Han W, Zhao X, Chilkoti A, López GP (2015) Bioinspired reversibly cross-linked hydrogels comprising polypeptide micelles exhibit enhanced mechanical properties. Adv Funct Mater 25(21):3122–3130

    Article  CAS  Google Scholar 

  19. Gonzalez MA, Simon JR, Ghoorchian A, Scholl Z, Lin S, Rubinstein M, Marszalek P, Chilkoti A, Lopez GP, Zhao X (2017) Strong, tough, stretchable, and self-adhesive hydrogels from intrinsically unstructured proteins. Adv Mater 29(10)

    Google Scholar 

  20. Xu D, Asai D, Chilkoti A, Craig SL (2012) Rheological properties of cysteine-containing elastin-like polypeptide solutions and hydrogels. Biomacromolecules 13(8):2315–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang W, Tarakanova A, Dinjaski N, Wang Q, Xia X, Chen Y, Wong JY, Buehler MJ, Kaplan DL (2016) Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk-elastin-like proteins. Adv Funct Mater 26(23):4113–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizuguchi Y, Mashimo Y, Mie M, Kobatake E (2020) Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules 21(3):1126–1135

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Xia XX, Huang SC, Qian ZG (2019) Development of adhesive and conductive resilin-based hydrogels for wearable sensors. Biomacromolecules 20(9):3283–3293

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological functions. Soft Matter 9(3):665–673

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106(8):2229–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whittaker JL, Dutta NK, Elvin CM, Choudhury NR (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J Mater Chem B 3(32):6576–6579

    Article  CAS  PubMed  Google Scholar 

  27. Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12(8):2957–2965

    Article  CAS  PubMed  Google Scholar 

  28. Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17(1):225–236

    Article  CAS  PubMed  Google Scholar 

  29. Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G (2019) Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 544:121–129

    Article  CAS  PubMed  Google Scholar 

  30. Esparza Y, Ullah A, Wu J (2018) Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 107(Pt A):290–296

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Wang Z, Foo SE, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW (2015) Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater Interfaces 7(9):5187–5198

    Article  CAS  PubMed  Google Scholar 

  32. Han S, Ham TR, Haque S, Sparks JL, Saul JM (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang B, Liu X, Yang C, Yang Z, Luo J, Kou S, Liu K, Sun F (2020) Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci Adv 6(41):eabc4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC (2020) Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci Adv 6(14):eaaz1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, Schaer GL, DeQuach JA, Kinsey AM, Chamberlin P, Christman KL (2019) First-in-Man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 4(6):659–669

    Article  PubMed  PubMed Central  Google Scholar 

  36. Griffanti G, Rezabeigi E, Li J, Murshed M, Nazhat SN (2019) Rapid biofabrication of printable dense collagen bioinks of tunable properties. Adv Funct Mater 30(4):1903874

    Article  Google Scholar 

  37. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487

    Article  CAS  PubMed  Google Scholar 

  38. Gogurla N, Roy B, Kim S (2020) Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 77:105242

    Article  CAS  Google Scholar 

  39. Torculas M, Medina J, Xue W, Hu X (2016) Protein-based bioelectronics. ACS Biomater Sci Eng 2(8):1211–1223

    Article  CAS  PubMed  Google Scholar 

  40. Luo J, Sun F (2020) Calcium-responsive hydrogels enabled by inducible protein–protein interactions. Polym Chem 11(31):4973–4977

    Article  CAS  Google Scholar 

  41. Nie J, Zhang X, Liu Y, Schroer M, Wang W, Ren J, Svergun DI, Zeng A-P (2021) A non-structural pure enzyme protein forms an LCST type of stimuli-responsive and reversible hydrogel with novel structure and catalytic activity. bioRxiv. https://doi.org/10.1101/2021.02.07.430034

  42. Foo CTSWP, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci U S A 106(52):22067–22072

    Article  CAS  Google Scholar 

  43. Li Y, Xue B, Cao Y (2020) 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett 9(4):512–524

    Article  CAS  Google Scholar 

  44. Tang T-C, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, Lu TK, Zhong C (2020) Materials design by synthetic biology. Nat Rev Mater. https://doi.org/10.1038/s41578-020-00265-w

  45. Marston WA, Sabolinski ML, Parsons NB, Kirsner RS (2014) Comparative effectiveness of a bilayered living cellular construct and a porcine collagen wound dressing in the treatment of venous leg ulcers. Wound Repair Regen 22(3):334–340

    Article  PubMed  Google Scholar 

  46. Gelain F, Luo Z, Zhang S (2020) Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev 120(24):13434–13460

    Article  CAS  PubMed  Google Scholar 

  47. Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D (2018) Accurate computational design of multipass transmembrane proteins. Science 359(6379):1042–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams DF (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009–10014

    Article  CAS  PubMed  Google Scholar 

  51. Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557

    Article  CAS  PubMed  Google Scholar 

  52. An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84

    Article  CAS  PubMed  Google Scholar 

  53. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    Article  CAS  PubMed Central  Google Scholar 

  54. Avila Rodriguez MI, Rodriguez Barroso LG, Sanchez ML (2018) Collagen: a review on its sources and potential cosmetic applications. J Cosmet Dermatol 17(1):20–26

    Article  PubMed  Google Scholar 

  55. Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F (2020) A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr:1–11

    Google Scholar 

  56. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31(1):e1801651

    Article  PubMed  Google Scholar 

  57. Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137(1-2):2–10

    Article  CAS  PubMed  Google Scholar 

  58. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(Pt 12):1955–1958

    Article  CAS  PubMed  Google Scholar 

  59. Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339(1):247–257

    Article  CAS  PubMed  Google Scholar 

  60. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303

    Article  CAS  PubMed  Google Scholar 

  61. Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  62. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336

    Article  CAS  PubMed  Google Scholar 

  63. Srivastava A, Isa IL, Rooney P, Pandit A (2017) Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 123:127–141

    Article  CAS  PubMed  Google Scholar 

  64. Moriarty N, Pandit A, Dowd E (2017) Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Rep 7(1):16033

    Article  PubMed  PubMed Central  Google Scholar 

  65. Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2017) Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 51:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20(6):683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma L, Gao C, Mao Z, Zhou J, Shen J (2004) Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials 25(15):2997–3004

    Article  CAS  PubMed  Google Scholar 

  68. Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27(15):2951–2961

    Article  CAS  PubMed  Google Scholar 

  69. Yang Z, Kou S, Wei X, Zhang F, Li F, Wang X-W, Lin Y, Wan C, Zhang W-B, Sun F (2018) Genetically programming stress-relaxation behavior in entirely protein-based molecular networks. ACS Macro Lett 7(12):1468–1474

    Article  CAS  Google Scholar 

  70. Fontana G, Thomas D, Collin E, Pandit A (2014) Microgel microenvironment primes adipose-derived stem cells towards an NP cells-like phenotype. Adv Healthc Mater 3(12):2012–2022

    Article  CAS  PubMed  Google Scholar 

  71. Skrzeszewska PJ, Jong LN, de Wolf FA, Cohen Stuart MA, van der Gucht J (2011) Shape-memory effects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12(6):2285–2292

    Article  CAS  PubMed  Google Scholar 

  72. Delgado LM, Fuller K, Zeugolis DI (2017) Collagen cross-linking: biophysical, biochemical, and biological response analysis. Tissue Eng Part A 23(14):1064–1077

    Article  CAS  PubMed  Google Scholar 

  73. McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael Lee J (2013) Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater 9(7):7191–7199

    Article  CAS  PubMed  Google Scholar 

  74. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  75. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640

    Article  PubMed  Google Scholar 

  77. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061

    Article  CAS  PubMed  Google Scholar 

  78. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi Y, Gehoh M, Yuzuriha K (1999) Structure refinement and diffuse streak scattering of silk (Bombyx mori ). Int J Biol Macromol 24(2-3):127–138

    Article  CAS  PubMed  Google Scholar 

  80. Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592

    Article  CAS  PubMed  Google Scholar 

  81. Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–2631

    Article  CAS  PubMed  Google Scholar 

  82. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8-9):991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng H, Zuo B (2021) Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 9:1238–1258

    Google Scholar 

  84. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620

    Article  PubMed  PubMed Central  Google Scholar 

  85. Catto V, Fare S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Korean J Couns Psychother 54:101–111

    CAS  Google Scholar 

  86. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53

    Article  CAS  PubMed  Google Scholar 

  87. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470

    Article  CAS  PubMed  Google Scholar 

  88. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155

    Article  CAS  PubMed  Google Scholar 

  89. Horan RL, Bramono DS, Stanley JR, Simmons Q, Chen J, Boepple HE, Altman GH (2009) Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model. Hernia 13(2):189–199

    Article  CAS  PubMed  Google Scholar 

  90. Wang C, Xia K, Zhang Y, Kaplan DL (2019) Silk-based advanced materials for soft electronics. Acc Chem Res 52(10):2916–2927

    Article  CAS  PubMed  Google Scholar 

  91. Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398

    Article  CAS  PubMed  Google Scholar 

  92. Schrader CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH (2018) Elastin is heterogeneously cross-linked. J Biol Chem 293(39):15107–15119

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ (2018) Molecular model of human tropoelastin and implications of associated mutations. Proc Natl Acad Sci U S A 115(28):7338–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88(2):239–250

    Article  CAS  PubMed  Google Scholar 

  95. Urry DW (1992) Free-energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57

    Article  CAS  PubMed  Google Scholar 

  96. Urry DW (1993) Molecular machines : how motion and other functions of living organisms can result from reversible chemical changes. Angew Chem Int Ed Engl 32(6):819–841

    Article  Google Scholar 

  97. Li B, Daggett V (2002) Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 23(5):561–573

    Article  PubMed  Google Scholar 

  98. D'Andrea P, Civita D, Cok M, Ulloa Severino L, Vita F, Scaini D, Casalis L, Lorenzon P, Donati I, Bandiera A (2017) Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. J Appl Biomater Funct Mater 15(1):e43–e53

    PubMed  Google Scholar 

  99. Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2008) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739

    Article  Google Scholar 

  100. Saxena R, Nanjan MJ (2015) Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv 22(2):156–167

    Article  CAS  PubMed  Google Scholar 

  101. Wen Q, Mithieux SM, Weiss AS (2020) Elastin biomaterials in dermal repair. Trends Biotechnol 38(3):280–291

    Article  CAS  PubMed  Google Scholar 

  102. Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP (2002) Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv Funct Mater 12(2):149–154

    Article  CAS  Google Scholar 

  103. Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A (2015) A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv Funct Mater 25(30):4814–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437(7061):999–1002

    Article  CAS  PubMed  Google Scholar 

  105. Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86(11):552–555

    Article  CAS  PubMed  Google Scholar 

  106. Bennet-Clark H (2007) The first description of resilin. J Exp Biol 210(22):3879–3881

    Article  PubMed  Google Scholar 

  107. Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 357(1418):121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ardell DH, Andersen SO (2001) Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 31(10):965–970

    Article  CAS  PubMed  Google Scholar 

  109. Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10(4):1601–1611

    Article  CAS  PubMed  Google Scholar 

  110. Qin G, Hu X, Cebe P, Kaplan DL (2012) Mechanism of resilin elasticity. Nat Commun 3:1003

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dutta NK, Truong MY, Mayavan S, Choudhury NR, Elvin CM, Kim M, Knott R, Nairn KM, Hill AJ (2011) A genetically engineered protein responsive to multiple stimuli. Angew Chem Int Ed 50(19):4428–4431

    Article  CAS  Google Scholar 

  112. Balu R, Whittaker J, Dutta NK, Elvin CM, Choudhury NR (2014) Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. J Mater Chem B 2(36):5936–5947

    Article  CAS  PubMed  Google Scholar 

  113. Whittaker JL, Dutta NK, Knott R, McPhee G, Voelcker NH, Elvin C, Hill A, Choudhury NR (2015) Tunable thermoresponsiveness of resilin via coassembly with rigid biopolymers. Langmuir 31(32):8882–8891

    Article  CAS  PubMed  Google Scholar 

  114. Shavandi A, Silva TH, Bekhit AA, Bekhit AEA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5(9):1699–1735

    Article  CAS  PubMed  Google Scholar 

  115. Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318

    Article  CAS  Google Scholar 

  116. McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA (2012) The structure, functions, and mechanical properties of keratin. JOM 64(4):449–468

    Article  Google Scholar 

  117. Guo J, Pan S, Yin X, He Y-F, Li T, Wang R-M (2014) pH-sensitive keratin-based polymer hydrogel and its controllable drug-release behavior. J Appl Polym Sci 132(9)

    Google Scholar 

  118. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad B Phys 84(7):246–263

    Article  CAS  Google Scholar 

  119. Xu Y, Meng H, Ren J, Zeng A-P (2020) Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-propanediol. J Biol Eng 14(1)

    Google Scholar 

  120. Zhang H, Li Y, Nie J, Ren J, Zeng AP (2020) Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 3(1):756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang X, Li M, Xu Y, Ren J, Zeng AP (2019) Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA. J Biol Eng 13:32

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang X, Nie J, Zheng Y, Ren J, Zeng AP (2020) Activation and competition of lipoylation of H protein and its hydrolysis in a reaction cascade catalyzed by the multifunctional enzyme lipoate-protein ligase A. Biotechnol Bioeng 117(12):3677–3687

    Google Scholar 

  123. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, Richie Jr JP, Ciccarella A, Calcagnotto A, Mikhael PG, Mentch SJ, Liu J, Ables G, Kirsch DG, Hsu DS, Nichenametla SN, Locasale JW (2019) Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572(7769):397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1-2):259–272

    Article  CAS  PubMed  Google Scholar 

  126. Cronan JE (2016) Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev 80(2):429–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu J, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10(10):1970–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Landschulz WH, Johnson PF, Mcknight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240(4860):1759–1764

    Article  CAS  PubMed  Google Scholar 

  129. Truebestein L, Leonard TA (2016) Coiled-coils: the long and short of it. Bioessays 38(9):903–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307(5):1427–1450

    Article  CAS  PubMed  Google Scholar 

  131. Wu Y, Collier JH (2017) alpha-Helical coiled-coil peptide materials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2)

    Google Scholar 

  132. Jing P, Rudra JS, Herr AB, Collier JH (2008) Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9(9):2438–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lv S, Cao Y, Li H (2012) Tandem modular protein-based hydrogels constructed using a novel two-component approach. Langmuir 28(4):2269–2274

    Article  CAS  PubMed  Google Scholar 

  134. Sun S-K, Wu J-C, Wang H, Zhou L, Zhang C, Cheng R, Kan D, Zhang X, Yu C (2019) Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218:119328

    Article  CAS  PubMed  Google Scholar 

  135. Sun W, Duan T, Cao Y, Li H (2019) An injectable self-healing protein hydrogel with multiple dissipation modes and tunable dynamic response. Biomacromolecules 20(11):4199–4207

    Article  CAS  PubMed  Google Scholar 

  136. Shu JY, Tan C, DeGrado WF, Xu T (2008) New design of helix bundle peptide-polymer conjugates. Biomacromolecules 9(8):2111–2117

    Article  CAS  PubMed  Google Scholar 

  137. Wang C, KopecÏek J, Stewart RJ (2001) Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules 2(3):912–920

    Article  CAS  PubMed  Google Scholar 

  138. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(4):417–420

    Article  CAS  PubMed  Google Scholar 

  139. Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH (2017) A supramolecular vaccine platform based on alpha-helical peptide nanofibers. ACS Biomater Sci Eng 3(12):3128–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang Y, Katyal P, Montclare JK (2019) Protein-engineered functional materials. Adv Healthc Mater 8(11):e1801374

    Article  PubMed  PubMed Central  Google Scholar 

  141. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392

    Article  CAS  PubMed  Google Scholar 

  142. Shen W, Zhang K, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5(2):153–158

    Article  CAS  PubMed  Google Scholar 

  143. Dooling LJ, Tirrell DA (2016) Engineering the dynamic properties of protein networks through sequence variation. ACS Cent Sci 2(11):812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O'Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK (2019) Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 20(9):3340–3351

    Article  CAS  PubMed  Google Scholar 

  145. Olsen AJ, Katyal P, Haghpanah JS, Kubilius MB, Li R, Schnabel NL, O’Neill SC, Wang Y, Dai M, Singh N, Tu RS, Montclare JK (2018) Protein engineered triblock polymers composed of two SADs: enhanced mechanical properties and binding abilities. Biomacromolecules 19(5):1552–1561

    Article  CAS  PubMed  Google Scholar 

  146. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393

    Article  PubMed  Google Scholar 

  149. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119

    Article  PubMed  PubMed Central  Google Scholar 

  150. Koutsopoulos S, Zhang S (2013) Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater 9(2):5162–5169

    Article  CAS  PubMed  Google Scholar 

  151. Koutsopoulos S, Zhang S (2012) Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. J Control Release 160(3):451–458

    Article  CAS  PubMed  Google Scholar 

  152. Zhang S (2017) Discovery and design of self-assembling peptides. Interface Focus 7(6):20170028

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhang S (2020) Self-assembling peptides: from a discovery in a yeast protein to diverse uses and beyond. Protein Sci 29(11):2281–2303

    Article  CAS  PubMed  Google Scholar 

  154. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803

    Article  CAS  PubMed  Google Scholar 

  155. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037

    Article  CAS  PubMed  Google Scholar 

  156. Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186

    Article  CAS  PubMed  Google Scholar 

  157. Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32(27):6471–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Majumder P, Baxa U, Walsh STR, Schneider JP (2018) Design of a multicompartment hydrogel that facilitates time-resolved delivery of combination therapy and synergized killing of glioblastoma. Angew Chem Int Ed 57(46):15040–15044

    Article  CAS  Google Scholar 

  160. Miller SE, Yamada Y, Patel N, Suarez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP (2019) Electrostatically driven Guanidinium interaction domains that control hydrogel-mediated protein delivery in vivo. ACS Cent Sci 5(11):1750–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nagy-Smith K, Beltramo PJ, Moore E, Tycko R, Furst EM, Schneider JP (2017) Molecular, local, and network-level basis for the enhanced stiffness of hydrogel networks formed from coassembled racemic peptides: predictions from pauling and corey. ACS Cent Sci 3(6):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nagy-Smith K, Yamada Y, Schneider JP (2016) Protein release from highly charged peptide hydrogel networks. J Mater Chem B 4(11):1999–2007

    Article  CAS  PubMed  Google Scholar 

  163. Shi J, Fichman G, Schneider JP (2018) Enzymatic control of the conformational landscape of self-assembling peptides. Angew Chem Int Ed 57(35):11188–11192

    Article  CAS  Google Scholar 

  164. Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP (2017) Triggered formation of anionic hydrogels from self-assembling acidic peptide amphiphiles. Macromolecules 50(15):5643–5651

    Article  CAS  Google Scholar 

  165. Yamada Y, Patel NL, Kalen JD, Schneider JP (2019) Design of a peptide-based electronegative hydrogel for the direct encapsulation, 3D culturing, in vivo syringe-based delivery, and long-term tissue engraftment of cells. ACS Appl Mater Interfaces 11(38):34688–34697

    Article  CAS  PubMed  Google Scholar 

  166. Lopez-Silva TL, Leach DG, Azares A, Li IC, Woodside DG, Hartgerink JD (2020) Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231:119667

    Article  CAS  PubMed  Google Scholar 

  167. Moore AN, Lopez Silva TL, Carrejo NC, Origel Marmolejo CA, Li IC, Hartgerink JD (2018) Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials 161:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tian YF, Hudalla GA, Han H, Collier JH (2013) Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides. Biomater Sci 1(10):1037

    Article  CAS  Google Scholar 

  169. Du Y, Rosqvist R, Forsberg A (2002) Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70(3):1453–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Roque AI, Soliakov A, Birch MA, Philips SR, Shah DS, Lakey JH (2014) Reversible non-stick behaviour of a bacterial protein polymer provides a tuneable molecular mimic for cell and tissue engineering. Adv Mater 26(17):2704–2709. 2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Soliakov A, Harris JR, Watkinson A, Lakey JH (2010) The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 28(35):5746–5754

    Article  CAS  PubMed  Google Scholar 

  172. Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA (2020) A thermally reformable protein polymer. Chem 6(11):3132–3151

    Article  CAS  Google Scholar 

  173. Miller J, Williamson ED, Lakey JH, Pearce MJ, Jones SM, Titball RW (1998) Macromolecular organisation of recombinant Yersinia pestis F1 antigen and the e¡ect of structure on immunogenicity. FEMS Immunol Med Microbiol 21(3):213–221

    Article  CAS  PubMed  Google Scholar 

  174. Chalton DA, Musson JA, Flick-Smith H, Walker N, McGregor A, Lamb HK, Williamson ED, Miller J, Robinson JH, Lakey JH (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74(12):6624–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ulusu Y, Dura G, Waller H, Benning MJ, Fulton DA, Lakey JH, Peters DT (2017) Thermal stability and rheological properties of the ‘non-stick’ Caf1 biomaterial. Biomed Mater 12(5):051001

    Article  PubMed  Google Scholar 

  176. Dura G, Waller H, Gentile P, Lakey JH, Fulton DA (2018) Tuneable hydrogels of Caf1 protein fibers. Korean J Couns Psychother 93:88–95

    CAS  Google Scholar 

  177. Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol 7(5):375–379

    Article  CAS  PubMed  Google Scholar 

  178. Maciasa MJ, Wiesnera S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–37

    Article  Google Scholar 

  179. Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318(5856):1625–1628

    Article  CAS  PubMed  Google Scholar 

  180. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109(12):E690–E697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zakeri B, Howarth M (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J Am Chem Soc 132(13):4526–4527

    Article  CAS  PubMed  Google Scholar 

  182. Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111(31):11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kou S, Yang Z, Luo J, Sun F (2017) Entirely recombinant protein-based hydrogels for selective heavy metal sequestration. Polym Chem 8(39):6158–6164

    Article  CAS  Google Scholar 

  184. Park J-E, Won J-I (2009) Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol Bioproc E 14(5):662–667

    Article  CAS  Google Scholar 

  185. Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Macromolecules 5(3):846–851

    Google Scholar 

  186. Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 113(11):4346–4348

    Article  CAS  Google Scholar 

  187. Qian Z-G, Zhou M-L, Song W-W, Xia X-X (2015) Dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. Biomacromolecules 16(11):3704–3711

    Article  CAS  PubMed  Google Scholar 

  188. Lyu S, Fang J, Duan T, Fu L, Liu J, Li H (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun 53(100):13375–13378

    Article  CAS  Google Scholar 

  189. Wang R, Yang Z, Luo J, Hsing IM, Sun F (2017) B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 114(23):5912–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Horner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gubeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Romer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31(12):e1806727

    Article  PubMed  Google Scholar 

  191. Zhang X, Dong C, Huang W, Wang H, Wang L, Ding D, Zhou H, Long J, Wang T, Yang Z (2015) Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide–protein conjugate for responsive hydrogel formation. Nanoscale 7(40):16666–16670

    Article  CAS  PubMed  Google Scholar 

  192. Liu L, Shadish JA, Arakawa CK, Shi K, Davis J, DeForest CA (2018) Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv Biosys 2(12):1800240

    Article  Google Scholar 

  193. Xiang D, Wu X, Cao W, Xue B, Qin M, Cao Y, Wang W (2020) Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dexter AF, Fletcher NL, Creasey RG, Filardo F, Boehm MW, Jack KS (2017) Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 7(44):27260–27271

    Article  CAS  Google Scholar 

  195. Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 548(19):7331–7337

    Article  Google Scholar 

  196. Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619–2625

    Article  CAS  PubMed  Google Scholar 

  197. Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, Pochan DJ, Langhans SA (2015) Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery. Biomacromolecules 16(9):2672–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ghosh G, Barman R, Sarkar J, Ghosh S (2019) pH-responsive biocompatible supramolecular peptide hydrogel. J Phys Chem B 123(27):5909–5915

    Article  CAS  PubMed  Google Scholar 

  199. Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J (2019) Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 7(5):2023–2036

    Article  CAS  PubMed  Google Scholar 

  200. McDaniel JR, Radford DC, Chilkoti A (2013) A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14(8):2866–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li NK, Roberts S, Quiroz FG, Chilkoti A, Yingling YG (2018) Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19(7):2496–2505

    Article  CAS  PubMed  Google Scholar 

  202. Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813

    Article  CAS  PubMed  Google Scholar 

  203. Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159

    Article  CAS  PubMed  Google Scholar 

  204. Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11(9-10):1039–1054

    Article  CAS  PubMed  Google Scholar 

  205. Gunasekar SK, Haghpanah JS, Montclare JK (2008) Assembly of bioinspired helical protein fibers. Polym Advan Technol 19(6):454–468

    Article  CAS  Google Scholar 

  206. Bromley EH, Channon KJ, King PJ, Mahmoud ZN, Banwell EF, Butler MF, Crump MP, Dafforn TR, Hicks MR, Hirst JD (2010) Assembly pathway of a designed α-helical protein fiber. Biophys J 98(8):1668–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, Bonneau R, Gilchrist ML, Montclare JK (2014) Engineered coiled-coil protein microfibers. Biomacromolecules 15(10):3503–3510

    Article  CAS  PubMed  Google Scholar 

  208. Rapp TL, DeForest CA (2020) Visible light-responsive dynamic biomaterials: going deeper and triggering more. Adv Healthc Mater 9(7):e1901553

    Article  PubMed  Google Scholar 

  209. Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD, Hoi H, Yaganoglu S, Mohr MA, Kitova EN, Klassen JS, Pantazis P, Thompson RJ, Campbell RE (2017) Optogenetic control with a photocleavable protein. PhoCl Nat Methods 14(4):391–394

    Article  PubMed  Google Scholar 

  210. Shadish JA, Strange AC, DeForest CA (2019) Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J Am Chem Soc 141(39):15619–15625

    Article  CAS  PubMed  Google Scholar 

  211. Hammer JA, Ruta A, West JL (2020) Using tools from optogenetics to create light-responsive biomaterials: LOVTRAP-PEG hydrogels for dynamic peptide immobilization. Ann Biomed Eng 48(7):1885–1894

    Article  PubMed  Google Scholar 

  212. Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan T (2008) Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules 9(6):1511–1518

    Article  CAS  PubMed  Google Scholar 

  213. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Article  CAS  PubMed  Google Scholar 

  214. Fletcher NL, Lockett CV, Dexter AF (2011) A pH-responsive coiled-coil peptide hydrogel. Soft Matter 7(21):10210

    Article  CAS  Google Scholar 

  215. EBRC (2021) Engineering biology & materials science: a research roadmap for interdisciplinary innovation. https://ebrc.org/focus-areas/roadmapping/roadmap-for-materials-science-engineering-biology/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-P. Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nie, J., Zhang, X., Wang, W., Ren, J., Zeng, AP. (2021). Tunable Protein Hydrogels: Present State and Emerging Development. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2021_167

Download citation

Publish with us

Policies and ethics