Skip to main content

Advances in Production of Medicinal Mushrooms Biomass in Solid State and Submerged Bioreactors

  • Chapter
  • First Online:
Biochemical Engineering and Biotechnology of Medicinal Mushrooms

Abstract

Production of mushroom fruit bodies using farming technology could hardly meet the increasing demand of the world market. During the last several decades, there have been various basic and applied studies on fungal physiology, metabolism, process engineering, and (pre)clinical studies. The fundamental aspects of solid-state cultivation of various kinds of medicinal mushroom mycelia in various types of bioreactors were established. Solid-state cultivation of medicinal mushrooms for their biomass and bioactive metabolites production appear very suitable for veterinary use. Development of comprehensive submerged technologies using stirred tank and airlift bioreactors is the most promising technology for fast and large-scale production of medicinal fungi biomass and their pharmaceutically active products for human need. The potentials initiate the development of new drugs and some of the most attractive over-the-counter human and veterinary remedies. This article is to overview the engineering achievements in solid state and submerged cultivations of medicinal mushrooms in bioreactors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a w :

Water activity

M :

Molecular mass of water

Mm:

Medicinal mushrooms

P :

Water vapor pressure

PDA:

Potato dextrose agar

P 0 :

Water vapor pressure of pure water

P/P0:

Equal to water activity

R :

Gas constant (8.31 J/mol K)

Smb:

Submerged bioprocessing

SSB:

Solid-state bioprocessing

SSC:

Solid-state cultivation

T :

Absolute temperature

Ψ:

Water potential

HSTR:

Horizontal stirred tank bioreactor

SBG:

Spent brewery grains

STR:

Stirred tank reactor

ALR:

Air lift reactor

rpm:

Rotation per minute

vvm:

Aeration volume/volume/minute

RBC:

Repeated-batch cultivation

GA:

Ganoderic acid

k L a :

Volumetric oxygen transfer coefficient

DO:

Dissolved oxygen

EPS:

Extracellular polysaccharides

IPS:

Intracellular polysaccharides

TA:

Triterpene acids

CCRD:

Central composite rotatable design

References

  1. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    CAS  Google Scholar 

  2. Bensky D, Gamble A (1993) Chinese materia medica.2nd edn. Eastland Press, Seattle, pp 24–34

    Google Scholar 

  3. Wasser SP, Weiss AL (1997) Medicinal mushrooms – Ganoderma lucidum, Reishi mushroom. Pedeifus Publishing House, Haifa

    Google Scholar 

  4. Ooi VEC, Fang Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–729

    CAS  Google Scholar 

  5. Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing and culture. Botanica Press, Santa Cruz

    Google Scholar 

  6. Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms 14(3):211–239

    CAS  Google Scholar 

  7. Wasser SP (2017) Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms 19(4):279–317

    Google Scholar 

  8. Chen JZ, Seviour R (2007) Medicinal importance of fungal ß-(1-3), (1-6)-glucans. Mycol Res 111:635–652

    CAS  Google Scholar 

  9. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724

    CAS  Google Scholar 

  10. Berovic M, Boh Podgornik B (2019) Engineering aspects in production of various medicinal mushrooms biomass in submerged bioreactors. Int J Med Mushrooms 21(8):735–753

    Google Scholar 

  11. Mizuno T (1999) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms. Jap Int J Med Mush 1:9–29

    CAS  Google Scholar 

  12. Berovic M (2019) Cultivation of medicinal mushroom biomass by solid-state bioprocessing in bioreactors. Advances in biochemical engineering/biotechnology. In: Steudler et al (eds) Solid state cultivation: research and industrial applications. Springer, Cham, pp 3–25

    Google Scholar 

  13. Thomas L, Larroche C, Pandey A (2013) Current developments in solid state bioprocessing. Biochem Eng J 81:146–161

    CAS  Google Scholar 

  14. Soccol R, Ferreira S, da Costa E, Junior Letti LA, Grace Karp S, Lorenci Woiciechowski A, Porto V, de Souza L (2017) Recent developments and innovations in solid state cultivation. Biotechnol Res Inn 1:52–71

    Google Scholar 

  15. Mitchell DA, Berovic M (2018) Solid state cultivation. In: Berovic M, Hewitt CJ (eds) Principles of comprehensive biochemical engineering. University of Ljubljana Press, Ljubljana, pp 225–262

    Google Scholar 

  16. Hu C, Kawachi MS (2004) Effects of physical properties of wood on the water activity of wood meal media for the cultivation of edible mushrooms. J Wood Sci 50:365–370

    Google Scholar 

  17. Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state cultivation technology: design, applications and engineering aspects. J Biotechnol 26:916–934

    Google Scholar 

  18. Mizuno T, Wang G, Zhang J, Kawagishi H, Nishitoba T, Li J (1995) Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substance and medicinal effects. Food Rev Int 11:151–166

    CAS  Google Scholar 

  19. Lee KM, Lee SY, Lee HY (1999) Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift bioreactor. J Biosci Bioeng 88:646–650

    CAS  Google Scholar 

  20. Wagner R, Mitchell DA, Lanzi Sassaki G, de Almeida L, Amazonas MA, Berovic M (2003) Submerged cultivation of Ganoderma lucidum. Food Technol Biotechnol 41:371–382

    CAS  Google Scholar 

  21. Habijanic J, Berovic M (2000) The relevance of solid-state substrate moisturing on Ganoderma lucidum biomass cultivation. Food Technol Biotechnol 38:225–228

    CAS  Google Scholar 

  22. Habjanic J, Berovic M (2002) Process of cultivation of fungus Ganoderma lucidum on a solid cultivation substrate. SI Patent 20923, 31 Dec 2002

    Google Scholar 

  23. Hsieh C, Yang FC (2004) Reusing soy residue for the solid-state bioprocessing of Ganoderma lucidum. Bioresour Technol 91:105–109

    CAS  Google Scholar 

  24. Song M, Kim N, Lee S, Hwang S (2007) Use of whey permeate for cultivating Ganoderma lucidum mycelia. J Dairy Sci 90:2141–2146

    CAS  Google Scholar 

  25. Chen AW (2002) Cultivation of the medicinal mushroom Ganoderma lucidum (Curt.: Fr.) P. Karst (Reishi) in North America (3), MushWorld – Cultivation, 2002-02-01

    Google Scholar 

  26. Montoya S, Sanchez OJ, Levin L (2013) Polysaccharide production by submerged and solid-state cultures from several medicinal higher basidiomycetes. Int J Med Mushr 15:71–79

    CAS  Google Scholar 

  27. Postemsky PD, Bidegain MA, González-Matute R, Figlas ND, Cubitto MA (2017) Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state bioprocessing with Ganoderma lucidum. Bioresour Technol 231:85–93

    CAS  Google Scholar 

  28. Xing ZT, Cheng JH, Tan Q, Pan YJ (2006) Effect of nutritional parameters on laccase production by the culinary and medicinal mushroom, Grifola frondosa. World J Microbiol Biotechnol 22:799–806

    CAS  Google Scholar 

  29. Montoya-Barreto S, Varon Lopez M, Levin L (2008) Effect of culture parameters on the production of the edible mushroom Grifola frondosa in tropical weathers. World J Microbiol Biotechnol 24:1361–1366

    Google Scholar 

  30. Švagelj M, Berovic M, Boh Podgornik B, Menard A, Simcic S, Wraber B (2008) Solid-state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and immunostimulatory effects of fungal intra- and extracellular b-polysaccharides. N Biotechnol 25(2/3):150–156

    Google Scholar 

  31. Habijanic J, Švagelj M, Berovic M, Boh B (2009) Submerged and solid-state cultivation of bioactive extra – and intracellular polysaccharides of medicinal mushrooms Ganoderma lucidum (W. Curt.: Fr.) P. Karst. and Grifola frondosa (Dicks.: Fr.) S. F. Gray (Aphyllophoromycetideae). Int J Med Mush 11(4):1–10

    Google Scholar 

  32. Gregori A, Švagelj M, Voglar D, Berovic M (2016) Growth characteristics and ergosterol content of Grifola frondosa in various solid-state substrates. Chem Biochem Eng Q 30(2):183–188

    CAS  Google Scholar 

  33. Knežević A, Milovanović I, Stajić M, Vukojević J (2013) Trametes suaveolens as ligninolytic enzyme producer. J Nat Sci 124:437–444

    Google Scholar 

  34. Stoilova I, Krastanov A, Stanchev V (2010) Properties of crude laccase from Trametes versicolor producedby solid-substrate cultivation. Adv Biosci Biotechnol 1:208–215

    CAS  Google Scholar 

  35. Dinis M, Bezerra RM, Nunes F, Dias AA, Guedes CV, Ferreira LM, Cone JW, Marques GS, Barros AR, Rodrigues MA (2009) Modification of wheat straw lignin by solid state cultivation with white-rot fungi. Bioresour Technol 100:4829–4835

    CAS  Google Scholar 

  36. de Souza ÉS, de L Sampaio I, de L Freire AK, da Silva BKS, da S Sobrinho A, Lima AM, Souza JVB (2011) Production of Trametes versicolor laccase by solid state cultivation using a fixed-bed bioreactor. Food Agric Environ 9:55–58

    Google Scholar 

  37. Rakus J, Berovic M, Golob J (2016) Extraction of fungal polysaccharides from solid state cultivated mycelia Trametes versicolor (Agaricomycetes). Int J Med Mush 18:509–519

    Google Scholar 

  38. Ko HH, Hung CF, Wang JP, Lin CN (2008) Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry 69:234–239

    CAS  Google Scholar 

  39. Gerbec B, Tavčar E, Gregori A, Kreft S, Berovic M (2015) Solid state cultivation of Hericium erinaceus biomass and Erinacine A production. J Bioproc Biotec 5:1–5

    Google Scholar 

  40. Han J (2003) Solid-state cultivation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value. Int J Food Microbiol 80:61–66

    CAS  Google Scholar 

  41. Gregori A (2014) Cordycepin production by Cordyceps militaris cultivation on spent brewery grains. Acta Biol Slov 57:45–52

    Google Scholar 

  42. Pei-Jung Li, Chung-Guang Shen (2002) Method for propagating fungi using solid state cultivation; WO 0220727, with a Chinese priority

    Google Scholar 

  43. Zore I, Berovic M, Boh Podgornik B, Hodzar D, Pohleven F (1998) Procedure for preparation of inoculum for growing of fungus Ganoderma lucidum by submersion cultivation, Slovenian patent SI 9700014

    Google Scholar 

  44. Yang FC, Liau CB (1998) The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem 33(5):547–553

    CAS  Google Scholar 

  45. Hsieh C, Liu CJ, Tseng MH, Lo CT, Yang YC (2006) Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. Enzyme Microb Technol 39:434–439

    CAS  Google Scholar 

  46. Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37:1375–1379

    CAS  Google Scholar 

  47. Simonic J, Stajic M, Glamoclija J, Vukojevic J, Duletic-Lausevic S, Brceski I (2008) Optimization of submerged cultivation conditions for extra- and intracellular polysaccharide production by medicinal Ling Zhi or Reishi mushroom Ganoderma lucidum (W. Curt.: Fr.) P. karst. (Aphyllophoromycetideae). Int J Med Mushooms 10:351–360

    CAS  Google Scholar 

  48. Berovic M, Habijanic J, Zore I, Wraber B, Hodzar D, Boh Podgornik B, Pohleven F (2003) Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J Biotechnol 103:77–86

    CAS  Google Scholar 

  49. Fang QH, Zhong JJ (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged cultivation of Ganoderma lucidum. Process Biochem 37:769–774

    CAS  Google Scholar 

  50. Fang QH, Zhong JJ (2002) Submerged cultivation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J 10:61–65

    CAS  Google Scholar 

  51. Hsieh C, Hsu TH, Yang FC (2005) Production of polysaccharides of Ganoderma lucidum (CCRC36021) by reusing thin stillage. Process Biochem 40:909–916

    CAS  Google Scholar 

  52. Tang YJ, Zhong JJ (2003) Role of oxygen supply in submerged cultivation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol 32:478–484

    CAS  Google Scholar 

  53. Hsieh C, Tseng MH, Liu CJ (2006) Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol 38:109–117

    CAS  Google Scholar 

  54. Zhang WX, Zhong JJ (2010) Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. J Biosci Bioeng 109:37–40

    CAS  Google Scholar 

  55. Agudelo-Escobar LM, Gutiérrez-López Y, Urrego-Restrepo S (2017) Effects of aeration, agitation and pH on the production of mycelial biomass and extracellular polysaccharide from the filamentous fungus Ganoderma lucidum. Dyna 84(200):72–79

    Google Scholar 

  56. Chang MY, Tsai GJ, Houng JY (2006) Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme Microb Technol 38:407–414

    CAS  Google Scholar 

  57. Tang YJ, Zhong JJ (2002) Fed-batch cultivation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enz Microbial Technol 31:20–28

    CAS  Google Scholar 

  58. Xu P, Ding ZY, Qian Z, Zhao CX, Zhang KC (2008) Improved production of mycelial biomass and ganoderic acid bysubmerged culture of Ganoderma lucidum SB97 using complex media. Enz Microbial Technol 42:325–331

    CAS  Google Scholar 

  59. Zhu LW, Zhong JJ, Tang YJ (2008) Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom G. lucidum. Process Biochem 43:1359–1370

    CAS  Google Scholar 

  60. Lee H, Song M, Yu Y, Hwang S (2003) Optimizing bioconversion of deproteinated cheese whey to mycelia of Ganoderma lucidum. Process Biochem 38:1685–1693

    CAS  Google Scholar 

  61. Lee H, Song M, Yu Y, Hwang S (2003) Production of Ganoderma lucidum mycelium using cheese whey as an alternative substrate: response surface analysis and biokinetics. Biochem Eng J 15:93–99

    CAS  Google Scholar 

  62. Papinutti L (2010) Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour Technol 101:1941–1946

    CAS  Google Scholar 

  63. Park JP, Kim SW, Hwang HJ, Yun JW (2001) Optimization of submerged culture conditions for the mycelial growth and exobiopolymer production by Cordyceps militaris. Lett Appl Microbiol 33:76–81

    CAS  Google Scholar 

  64. Xu YN, Zhong JJ (2012) Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv 30:1301–1308

    CAS  Google Scholar 

  65. Xu YN, Xia XX, Zhong JJ (2013) Induced effect of Na+ on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction. Biotechnol Bioeng 110:1913–1923

    CAS  Google Scholar 

  66. Xu YN, Xia XX, Zhong JJ (2014) Induction of ganoderic acid biosynthesis by Mn2+ in static liquid cultivation of Ganoderma lucidum. Biotechnol Bioeng 111:2358–2365

    CAS  Google Scholar 

  67. Berovic M, Habijanič J, Boh Podgornik B, Wraber-Herzog B, Petravić-Tominac V (2013) Production of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.: Fr.) P. Karst. biomass and polysaccharides by submerged cultivation. Int J Med Mushrooms 15(1):81–89

    Google Scholar 

  68. Habijanič J, Berovic M, Boh Podgornik B, Plankl M, Wraber-Herzog B (2015) Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF−α, IL−12, IFN−γ, IL−2, IL−4, IL−10 and IL−1. N Biotechnol 32(1):85–95

    Google Scholar 

  69. Yang FC, Ke YF, Kuo SS (2000) Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake-flask cultures. Enzyme Microb Technol 27:295–301

    CAS  Google Scholar 

  70. Jones P, Shabab BA, Trinci APJ, Moore D (1988) Effect of polymeric additives, especially Junlon and Hostacerin, on growth of some basidiomycetes in submerged culture. Trans Br Mycol Soc 90:577–583

    CAS  Google Scholar 

  71. Torres Lopez AM, Gaviria Soto JA, Quintero Diaz JC, Atehortua Garces L, Rojas Vahos DF (2009) Characterization of the medicinal mushroom Ganoderma lucidum submerged culture in stirred tank. N Biotechnol 25:195–196

    Google Scholar 

  72. Fang QH, Zhong JJ (2002) Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog 18:51–54

    CAS  Google Scholar 

  73. Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 20:1408–1413

    CAS  Google Scholar 

  74. Tang YJ, Zhong JJ (2003) Scale-up of a liquid static culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum. Biotechnol Prog 19:1842–1846

    CAS  Google Scholar 

  75. Shih IL, Tsai KL, Chienyan Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33:193–201

    CAS  Google Scholar 

  76. Zhang W, Tang YJ (2008) A novel three-stage light irradiation strategy in the submerged cultivation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides. Biotechnol Prog 24:1249–1261

    CAS  Google Scholar 

  77. Tang YJ, Zhu LW (2010) Improvement of ganoderic acid and Ganoderma polysaccharide biosynthesis by Ganoderma lucidum cultivation under the inducement of Cu2+. Biotechnol Prog 26:417–423

    CAS  Google Scholar 

  78. Tang YJ, Zhang W, Liu R-S, Zhu LW, Zhong JJ (2011) Scale-up study on the fed-batch cultivation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochem 46:404–408

    CAS  Google Scholar 

  79. Tang YJ, Zhang W, Zhu LW (2009) Hyperproduction of Ganoderma polysaccharides and ganoderic acid during cultivation of medicinal mushroom Ganoderma lucidum by multi-stage control and induced culture. J Biosci Bioeng 108:114–134

    Google Scholar 

  80. Tang YJ, Zhang W, Zhong JJ (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch cultivation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresour Technol 100:1852–1859

    CAS  Google Scholar 

  81. Wei ZH, Liu LL, Guo XF, Li YJ, Hou BC, Fan QL, Wang KX, Luo YD, Zhong JJ (2016) Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26. Bioprocess Biosyst Eng 39:37–44

    CAS  Google Scholar 

  82. Birhanli E, Yesilada O (2010) Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochem Eng J 52:33–37

    CAS  Google Scholar 

  83. Mirończuk AM, Furgała J, Rakicka M, Rymowicz W (2014) Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol 41:57–64

    Google Scholar 

  84. Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H (2013) Batch, fed-batch and repeated fed-batch cultivation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst Eng 36:1905–1912

    CAS  Google Scholar 

  85. Jiang WY, Zhao JB, Wang ZQ, Yang ST (2014) Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch cultivations. Bioresour Technol 163:172–179

    CAS  Google Scholar 

  86. Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y (2014) Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch cultivation under non-sterilized conditions. Bioresour Technol 163:160–166

    CAS  Google Scholar 

  87. Wan Mohtar WAAQI, Latif NA, Harvey LM, McNeil B (2016) Production of extracellular polysaccharide by Ganoderma lucidum in a repeated-batch cultivation. Biocatal Agric Biotechnol 6:91–10

    Google Scholar 

  88. Wan Mohtar WAAQI, Kadir SA, Saari N (2016) The morphology of Ganoderma lucidum mycelium in a repeated-batch cultivation for extracellular polysaccharide production. Biotechnol Rep 11:2–11

    Google Scholar 

  89. Berovic M, Popović M (2018) Submerged cultivation of Ganoderma lucidum biomass in stirred tank reactor. Chem Biochem Eng Q 32(4):465–472

    CAS  Google Scholar 

  90. Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW (2003) Biological activities of the polysaccharides produced from submerged culture of the edible basidiomycete Grifola frondosa. Enzyme Microb Technol 32:574–581

    CAS  Google Scholar 

  91. Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzyme Microb Technol 35:369–376

    CAS  Google Scholar 

  92. Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY (2006) Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresour Technol 10:1209–1216

    Google Scholar 

  93. Shih IL, Chou BW, Chen CC, Wu JY, Hsieh C (2008) Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa. Bioresour Technol 99:785–793

    CAS  Google Scholar 

  94. Bae JT, Sim GS, Lee DH, Lee BC, Pyo HB, Choe TB, Yun JW (2005) Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts. FEMS Microbiol Lett 251:347–354

    CAS  Google Scholar 

  95. Park JP, Kim SW, Hwang HJ, Yun JW (2001) Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 33:76–81

    CAS  Google Scholar 

  96. Suzuki I, Hashimoto K, Oikawa S, Sato K, Osawa M, Yadomae T (1989) Antitumor and immunomodulating activities of a beta-glucan obtained from liquid cultured Grifola frondosa. Chem Pharm Bull 37:410–413

    CAS  Google Scholar 

  97. Lin JT, Liu WH (2006) O-orsellinaldehyde from the submerged culture of the edible mushroom Grifola frondosa exhibits selective cytotoxic effect against Hep 3B cells through apoptosis. J Agric Food Chem 54:7564–7569

    CAS  Google Scholar 

  98. Freixo MR, Karmali A, Arteiro JM (2008) Production of polygalacturonase from Coriolus versicolor grown on tomato pomace its chromatographic behavior on immobilized metal chelates. J Ind Microbiol Biotechnol 35:475–484

    Google Scholar 

  99. Klechak IR, Mitropolskaya NJ, Antonenko LO, Nyshporska OI (2009) The specificity of Coryolus versicolor growth in a deep culture. Res Bull NTUU KPI 20(1):128–133

    Google Scholar 

  100. Tisma M, Znidarsic-Plazl P, Vasic-Racki D, Zelic B (2012) Optimzation of laccase productivity by Trametes versicolor cultivation on industrial waste. Appl Biochem Biotechnol 166:36–46

    CAS  Google Scholar 

  101. Ivanova TS, Bisko NA, Krupodorova TA, Barshteyn VY (2014) Breadcrumb as a substrate for T. versicolor and S. commune polysaccharides and protein in submerged cultivation. Korean J Microbiol Biotechnol 42(1):1–6

    Google Scholar 

  102. Duvnjak D, Pantić M, Pavlović V, Nedović V, Lević S, Matijašević D, Sknepnek A, Nikšić M (2016) Advances in batch culture fermented Trametes versicolor medicinal mushroom for the production of antibacterial compounds. Innov Food Sci Emerg Technol 34:1–8

    CAS  Google Scholar 

  103. Krzyczkowski W, Malinowska E, Herold F (2010) Erinacine A biosynthesis in submerged cultivation of Hericium erinaceum: quantification and improved cultivation. Eng Life Sci 10(5):446–457

    CAS  Google Scholar 

  104. Krzyczkowski W, Malinowska E, Suchocki P, Kleps J, Olejnik M, Herold F (2009) Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem 113(1):351–355

    CAS  Google Scholar 

  105. Zhang Z, Liu RN, Tang QJ, Zhang JS, Yang Y, Shang XD (2015) A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem Lett 11:151–156

    CAS  Google Scholar 

  106. Huang D, Cui FJ, Li Y, Zhang Z, Zhao J, Han XM, Xiao X, Qian J, Wu Q, Guan G (2007) Nutritional requirements for the mycelial biomass and exopolymer production by Hericium erinaceus CZ-2. Food Technol Biotechnol 45(4):389–395

    CAS  Google Scholar 

  107. Mao XB, Zhong JJ (2006) Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 38:343–350

    CAS  Google Scholar 

  108. Park JP, Kim YM, Kim SW, Hwang HJ, Cho YJ, Lee YS, Song CH, Yun JW (2002) Effect of aeration rate on the mycelial morphology and exo-biopolymer in Cordyceps militaris. Process Biochem 37:1257–1262

    CAS  Google Scholar 

  109. Kwon JS, Lee JS, Shin WC, Lee KE, Hong EK (2009) Optimization of culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Cordyceps militaris in liquid culture biotechnology. Bioprocess Eng 14:756–762

    CAS  Google Scholar 

  110. Kim HO, Yun JW (2005) A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol 99:728–738

    CAS  Google Scholar 

  111. Oh JY, Cho EJ, Nam SH, Choi JW, Yun JW (2007) Production of polysaccharide–peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. Process Biochem 42:352–362

    CAS  Google Scholar 

  112. Dou Y, Xiao JH, Xia XX, Zhong JJ (2013) Effect of oxygen supply on biomass and helvolic acid production in submerged fermentation of Cordyceps taii. Biochem Eng J 81:73–79

    CAS  Google Scholar 

  113. Tang YJ, Zhu LW, Li HM, Li DS (2007) Submerged cultivation of mushrooms. Food Technol Biotechnol 45(3):221–229

    CAS  Google Scholar 

  114. Fana L, Soccol AT, Pandey A, Soccol RC (2007) Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged cultivation and its antitumor activity. LWT- Food Sci Technol 40:30–35

    Google Scholar 

  115. Lung MY, Hsieh CW (2011) Antioxidant property and production of extracellular polysaccharide from Armillaria mellea in submerged cultures: effect of culture aeration rate. Eng Sci 11:482–490

    CAS  Google Scholar 

  116. Berovic M, Kneževic M (1995) Pleurotus saca submerged cultivation. Biotechnol Lett 17(8):839–844

    CAS  Google Scholar 

  117. Papaspyridi LM, Katapodis P, Gonou-Zagouc Z, Kapsanaki-Gotsic E, Christakopoulos P (2010) Optimization of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture. Biochem Eng J 50:131–138

    CAS  Google Scholar 

  118. Noorlidah A, Rozila I, Norjuliz MKJ, Annuar MSM (2013) Production of liquid spawn of an edible grey oyster mushroom, Pleurotus pulmonarius (Fr.) Quél by submerged cultivation and sporophore yield on rubber wood sawdust. Sci Hortic 161:65–69

    Google Scholar 

  119. Shen JW, Shi CW, Xu CP (2013) Exopolysaccharides from Pleurotus pulmonarius. Food Technol Biotechnol 51(4):520–527

    CAS  Google Scholar 

  120. Liang CH, Huang LY, Ho KJ, Lin SY, Mau JL (2013) Submerged cultivation of mycelium with high Ergothioneine content from the culinary-medicinal, king oyster mushroom Pleurotus eryngii and its composition. International Journal of Medicinal Mushrooms 15(2):153–164

    CAS  Google Scholar 

  121. Mohamad SA, Awang MR, Ibrahim R, Keong CY, Hamzah MY, Rashid RA, Hussein S, Rahim KA, Daud F, Hamid AA, Yusoff WMW (2015) Production of endopolysaccharides from Malaysia’s local mushrooms in air-lift bioreactor. Adv Biosci Biotechnol 6:456–462

    Google Scholar 

  122. Wang XL, Ding ZY, Zhao Y, Liu GQ, Zhou GY (2017) Efficient accumulation and in-vitro antitumor activities of triterpene acids from fed-batch cultivation of Ling-Zhi or Reishi medical mushroom Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms 19(5):419–431

    Google Scholar 

  123. Enman J, Hodge D, Berglund K (2012) Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. J Chem Technol Biotechnol 87(7):903–912

    CAS  Google Scholar 

  124. Zhu H, Liu W, Tian B, Zhang S (2012) Fluid flow induced shear stress affects cell growth and Total flavone production by Phellinus igniarius in stirred-tank bioreactor. Chiang Mai J Sci 39(1):69–75

    CAS  Google Scholar 

  125. Ma TW, Xiao BY, Yang FC Establishment of cultivating strategy for highly aggregated mycelia of Morchella esculenta in a stirred-tank bioreactor. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-012-0753-x

  126. Shin KS, Yu KW, Lee HK, Lee H, Cho WD, Suh HJ (2007) Production of anti-complementary exopolysaccharides from submerged culture of Flammulina velutipes. Food Technol Biotechnol 45(3):319–326

    CAS  Google Scholar 

  127. Huang L, Li C, Sun N, Wang Y, Yang H, Li Y, Ban L (2020) Optimization of liquid culture condition of a novel fungus Hygrophoropsis sp. and antioxidant activity of extracts. Biochem Res Int 8:1–11

    Google Scholar 

  128. Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW (2003) Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem 38(7):1025–1030

    CAS  Google Scholar 

  129. Lai WH, Salleh SM, Fauzi D, Zainal Z, Othman AM, Saleh NM (2014) Optimization of submerged culture conditions for the production of mycelial biomass and exopolysaccharides from Lignosus rhinocerus. Sains Malaysiana 43(1):73–80

    CAS  Google Scholar 

  130. Chen HJ, Chen YS, Liu SL, Liou BK, Chen CS (2020) The influence of submerged cultivation of Inonotus obliquus with control atmosphere treatment on enhancing bioactive ingredient contents. Appl Biochem Biotechnol 191:412–425

    CAS  Google Scholar 

  131. Shu CH, Wu CJ, Hsiao WJ (2015) Enhancement of triterpenoids production of Antrodia cinnamomea by co-culture with Saccharomyces cerevisiae. J Bioprocess Biotech 5(9):2–7. https://doi.org/10.4172/2155-9821.1000253

    Article  CAS  Google Scholar 

  132. Shu CH, Lung MY (2004) Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem 39:931–937

    CAS  Google Scholar 

  133. Joo JH, Lim JM, Kim HO, Kim SW, Hwang HJ, Choi JW, Yun JW (2004) Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk) S.lto TG-3. World J Microbiol Biotechnol 20:767–773

    CAS  Google Scholar 

  134. Sinha J, Bae JT, Park JP, Kim KH, Song CH, Yun JW (2001) Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol 56:88–92

    CAS  Google Scholar 

  135. Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW (2003) Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J Appl Microbiol 94:708–719

    CAS  Google Scholar 

  136. Zou X (2006) Fed-batch cultivation for hyperproduction of polysaccharide and ergosterol by medicinal mushroom Agaricus brasiliensis. Process Biochem 41(4):970–974

    CAS  Google Scholar 

  137. Xu CP, Yun JW (2003) Optimization of submerged-culture conditions for mycelial growth and exobiopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis. Biotechnol Appl Biochem 38(2):193–199

    CAS  Google Scholar 

  138. Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96(10):1175–1182

    CAS  Google Scholar 

  139. Kawagoe M, Hyakumura K, Suye SI, Miki K, Naoe K (1997) Application of bubble column bioreactors to submerged culture of Schizophyllum commune for production of L-malic acid. J Ferment Bioeng 84(4):333–336

    CAS  Google Scholar 

  140. Lim JM, Yun JW (2006) Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG-1. Process Biochem 41:1620–1626

    CAS  Google Scholar 

  141. Zhong JJ, Tang YJ (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. In: Zhong JJ (ed) Advances in biochemical engineering/biotechnology (vol 87): biomanufacturing. Springer, Heidelberg, pp 25–59

    Google Scholar 

  142. Qin H, Xu JW, Xiao JH, Tang YJ, Xiao H, Zhong JJ (2016) Cell factories of higher fungi for useful metabolite production. In: Ye Q, Bao J, Zhong JJ (eds) Bioreactor engineering research and industrial applications I: cell factories. Advances in biochemical engineering/biotechnology, vol 155. Springer, pp 199–235

    Google Scholar 

  143. Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ (2006) Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci 80:205–211

    CAS  Google Scholar 

  144. Chen NH, Liu JW, Zhong JJ (2010) Effect of ganoderic acid T on anti-invasion in vitro and anti-metastasis in vivo. Pharmacol Rep 62:150–163

    CAS  Google Scholar 

  145. Liu RM, Li YB, Zhong JJ (2012) Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur J Pharmacol 681:23–33

    CAS  Google Scholar 

  146. Xiao JH, Xiao DM, Chen DX, Xiao Y, Liang ZQ, Zhong JJ (2012) Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evid Based Complement Alternat Med. https://doi.org/10.1155/2012/273435

  147. Lu YH, Pan WD, Xiao JH, Sun ZH, Zhong JJ (2014) Cytotoxic mechanism of novel compound jiangxienone from Cordyceps jiangxiensis against cancer cells involving DNA damage response pathway. Process Biochem 49(4):697–705

    CAS  Google Scholar 

  148. Xiao JH, Zhang Y, Liang GY, Liu RM, Li XG, Zhang LT, Chen DX, Zhong JJ (2017) Synergistic antitumor efficacy of antibacterial helvolic acid from Cordyceps taii and cyclophosphamide in a tumor mouse model. Exp Biol Med 242:214–222

    CAS  Google Scholar 

  149. Wasser SP (2021) Medicinal mushrooms: current properties and clinical effects. Chapter 10, this volume

    Google Scholar 

Download references

Acknowledgments

Special gratitude to Univ.dipl.ing. Branko Škrinjar, Head of FKKT Library, University of Ljubljana, for his great contribution to the Literature support of this article. JJZ would like to thank the financial support by National Key R&D Program of China (No. 2018YFA0901900) and the National Natural Science Foundation of China (No. 31770037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marin Berovic or Jian-Jiang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berovic, M., Zhong, JJ. (2022). Advances in Production of Medicinal Mushrooms Biomass in Solid State and Submerged Bioreactors. In: Berovic, M., Zhong, JJ. (eds) Biochemical Engineering and Biotechnology of Medicinal Mushrooms. Advances in Biochemical Engineering/Biotechnology, vol 184. Springer, Cham. https://doi.org/10.1007/10_2022_208

Download citation

Publish with us

Policies and ethics