Skip to main content

Hadron Structure and QCD: Effective Field Theory for Lattice Simulations

  • Chapter
  • First Online:
Lattice Hadron Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 663))

Abstract

Chiral extrapolations will be essential for many years if one is to connect modern lattice QCD calculations with experiment. Given the enormous efforts made to ensure that the lattice QCD simulations are a rigorous implementation of non-perturbative QCD, it is essential that the chiral extrapolation procedure should also be consistent with all known constraints of QCD. We review the enormous progress made on this problem over the past three or four years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P. A. Guichon, K. Saito, E. N. Rodionov and A. W. Thomas, Nucl. Phys. A 601 (1996) 349 [arXiv:nucl-th/9509034].

    Article  Google Scholar 

  2. W. Bentz and A. W. Thomas, Nucl. Phys. A 696 (2001) 138 [arXiv:nucl-th/0105022].

    Article  Google Scholar 

  3. S. Strauch et al. [Jefferson Lab E93-049 Collaboration], Phys. Rev. Lett. 91 (2003) 052301 [arXiv:nucl-ex/0211022].

    Article  CAS  PubMed  Google Scholar 

  4. D. H. Lu, K. Tsushima, A. W. Thomas, A. G. Williams and K. Saito, Phys. Rev. C 60 (1999) 068201 [arXiv:nucl-th/9807074].

    Article  Google Scholar 

  5. T. Lippert, S. Gusken and K. Schilling, Nucl. Phys. Proc. Suppl. 83 (2000) 182.

    Google Scholar 

  6. C. W. Bernard et al., Phys. Rev. D 64 (2001) 054506 [arXiv:hep-lat/0104002].

    Article  Google Scholar 

  7. L. F. Li and H. Pagels, Phys. Rev. Lett. 26, 1204 (1971).

    Article  CAS  Google Scholar 

  8. T. Hatsuda, Phys. Rev. Lett. 65, 543 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. S. Durr, arXiv:hep-lat/0208051.

    Google Scholar 

  10. R. E. Stuckey and M. C. Birse, J. Phys. G 23, 29 (1997) [arXiv:hep-ph/9602312].

    Article  CAS  Google Scholar 

  11. G. P. Lepage, arXiv:nucl-th/9706029.

    Google Scholar 

  12. H. Pagels, Phys. Rept. 16, 219 (1975).

    Article  CAS  Google Scholar 

  13. J. Gasser, M. E. Sainio and A. Svarc, Nucl. Phys. B 307, 779 (1988).

    Article  Google Scholar 

  14. R. F. Lebed, Nucl. Phys. B 430, 295 (1994) [arXiv:hep-ph/9311234].

    Article  Google Scholar 

  15. M. K. Banerjee and J. Milana, Phys. Rev. D 54, 5804 (1996) [arXiv:hep-ph/9508340].

    Article  CAS  Google Scholar 

  16. S. V. Wright, PhD thesis, University of Adelaide, 2002.

    Google Scholar 

  17. A. W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).

    CAS  Google Scholar 

  18. A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D 65, 054505 (2002)[Erratum-ibid. D 67, 059901 (2003)][arXiv:hep-lat/0105015].

    Google Scholar 

  19. S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D 68, 054502 (2003) [arXiv:hep-lat/0212039].

    Article  Google Scholar 

  20. Y. Iwasaki, Nucl. Phys. B 258 (1985) 141.

    Article  Google Scholar 

  21. UKQCD, C.R. Allton et al., Phys. Rev. D60 (1999) 034507, hep-lat/9808016.

    Google Scholar 

  22. R. Sommer, Nucl. Phys. B 411 (1994) 839, hep-lat/9310022.

    Article  CAS  Google Scholar 

  23. R.G. Edwards, U.M. Heller and T.R. Klassen, Nucl. Phys. B517 (1998) 377, hep-lat/9711003.

    Article  CAS  Google Scholar 

  24. R. D. Young, D. B. Leinweber and A. W. Thomas, Prog. Part. Nucl. Phys. 50, 399 (2003) [arXiv:hep-lat/0212031].

    Article  CAS  Google Scholar 

  25. D. B. Leinweber, A. W. Thomas and R. D. Young, arXiv:hep-lat/0302020.

    Google Scholar 

  26. D. B. Leinweber, A. W. Thomas, K. Tsushima and S. V. Wright, Phys. Rev. D 61, 074502 (2000) [arXiv:hep-lat/9906027].

    Article  Google Scholar 

  27. D. B. Leinweber, A. W. Thomas, K. Tsushima and S. V. Wright, Phys. Rev. D 64, 094502 (2001) [arXiv:hep-lat/0104013].

    Article  Google Scholar 

  28. A. W. Thomas, D. B. Leinweber, R. D. Young and S. V. Wright, Mod. Phys. Lett. A 18, 347

    Article  CAS  Google Scholar 

  29. D. B. Leinweber, D. H. Lu and A. W. Thomas, Phys. Rev. D 60, 034014 (1999) [arXiv:hep-lat/9810005].

    Article  Google Scholar 

  30. E. J. Hackett-Jones, D. B. Leinweber and A. W. Thomas, Phys. Lett. B 489, 143 (2000) [arXiv:hep-lat/0004006].

    Article  CAS  Google Scholar 

  31. D. B. Leinweber, R. M. Woloshyn and T. Draper, Phys. Rev. D 43, 1659 (1991).

    Article  CAS  Google Scholar 

  32. E. J. Hackett-Jones, D. B. Leinweber and A. W. Thomas, Phys. Lett. B 494, 89 (2000) [arXiv:hep-lat/0008018].

    Article  CAS  Google Scholar 

  33. M. Gockeler, T. R. Hemmert, R. Horsley, D. Pleiter, P. E. Rakow, A. Schafer and G. Schierholz [QCDSF Collaboration], arXiv:hep-lat/0303019.

    Google Scholar 

  34. J. D. Ashley, D.B. Leinweber, A.W. Thomas and R.D. Young, arXiv:hep-lat/0308024.

    Google Scholar 

  35. C. R. Allton et al. [UKQCD Collaboration], Phys. Rev. D 47, 5128 (1993).

    Article  CAS  Google Scholar 

  36. D. B. Leinweber, Phys. Rev. D 51, 6383 (1995).

    Article  CAS  Google Scholar 

  37. F. X. Lee and D.B. Leinweber, Nucl. Phys. Proc. Suppl. 73, 258 (1999).

    Article  CAS  Google Scholar 

  38. D. G. Richards, M. Gockeler, R. Horsley, D. Pleiter, P. E. Rakow, G. Schierholz and C. M. Maynard, Nucl. Phys. Proc. Suppl. 109, 89 (2002).

    Article  Google Scholar 

  39. M. Gockeler, R. Horsley, D. Pleiter, P. E. Rakow, G. Schierholz, C.M. Maynard and D.G. Richards, Phys. Lett. B 532, 63 (2002).

    Article  CAS  Google Scholar 

  40. S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu, N. Mathur and J.B. Zhang,hep-ph/0306199.

    Google Scholar 

  41. S. Sasaki, T. Blum and S. Ohta, Phys. Rev. D 65, 074503 (2002).

    Article  Google Scholar 

  42. W. Melnitchouk et al., Phys. Rev. D 67, 114506 (2003),hep-lat/0210042.

    Article  Google Scholar 

  43. J. M. Zanotti, et al., hep-lat/0210043.

    Google Scholar 

  44. R. D. Young, D. B. Leinweber, A. W. Thomas and S. V. Wright, Phys. Rev. D 66, 094507 (2002).

    Article  Google Scholar 

  45. I. C. Cloet, D. B. Leinweber and A. W. Thomas, Phys. Lett. B 563 (2003) 157.

    Article  CAS  Google Scholar 

  46. D. Morel and S. Capstick, nucl-th/0204014; S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986); S. Capstick and W. Roberts, Phys. Rev. D 47, 1994 (1993), Phys. Rev. D 49, 4570 (1994).

    Google Scholar 

  47. D. Morel, B. Crouch, D. B. Leinweber and A. W. Thomas, arXiv:nucl-th/0309044.

    Google Scholar 

  48. J.N. Labrenz and S.R. Sharpe, Phys. Rev. D 54, 4595 (1996) [arXiv:hep-lat/9605034].

    Article  CAS  Google Scholar 

  49. J. M. Zanotti, D. B. Leinweber, A. G. Williams, J. B. Zhang, W. Melnitchouk and S. Choe, hep-lat/0304001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alex C. Kalloniatis Derek B. Leinweber Anthony G. Williams

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Leinweber, D., Thomas, A., Young, R. Hadron Structure and QCD: Effective Field Theory for Lattice Simulations. In: C. Kalloniatis, A., B. Leinweber, D., G. Williams, A. (eds) Lattice Hadron Physics. Lecture Notes in Physics, vol 663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11356462_5

Download citation

Publish with us

Policies and ethics