Skip to main content

Imaging Tumor Microenvironment with Ultrasound

  • Conference paper
Book cover Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

Recent advances in molecular biology are providing new opportunities for breast cancer imaging. Our approach uses ultrasound to image viscoelastic features of tumors. These features describe microenvironmental factors that stimulate signaling pathways in tumors that ultimately affect metastatic potential and response to traditional therapeutics. This paper explains the motivation for the approach, describes measurements in phantoms and patients, and defines measurement sensitivity using hydrogels with tissue-like features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey, C.K., Borowsky, A.D., McGoldrick, E.T., Gregg, J.P., Maglione, J.E., Cardiff, R.D., Cherry, S.R.: In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc. Natl. Acad. Sci. 101, 11438–11443 (2004)

    Article  Google Scholar 

  2. Pellot-Barakat, C., Frouin, F., Insana, M.F.: Herment Alan: Ultrasound Elastography Based on Multiscale Estimations of Regularized Displacement Fields. IEEE Trans Medical Imaging 23, 153–163 (2004)

    Article  Google Scholar 

  3. Barsky, S., Grotendorst, G.R., Liotta, L.A.: Increased content of type V collagen desmoplasia of human breast carcinoma. Am. J. Pathology 108, 276–283 (1982)

    Google Scholar 

  4. Bercoff, J., Chaffai, S., Tanter, M., Sandrin, L., Catheline, S., Fink, M., Gennisson, J.L., Meunier, M.: In vivo breast tumor detection using transient elastography. Ultrasound Med. Biol. 29, 1387–1396 (2003)

    Article  Google Scholar 

  5. Chachra, D., Gratzer, P.F., Pereira, C.A., Lee, J.M.: Effect of applied uniaxial stress on rate and mechanical effects of cross-linking is tissue derived biomaterials. Biomaterials 17, 1865–1875 (1996)

    Article  Google Scholar 

  6. Chaturvedi, P., Insana, M.F., Hall, T.J.: Testing the limitations of 2-D local companding in strain imaging using phantoms. IEEE Trans. Ultrason., Ferro., Freq., Control 45, 1022–1031 (1998)

    Article  Google Scholar 

  7. Dayton, P., Pearson, D., Clark, J., Simon, S., Schumann, P., Zutshi, R., Matsunaga, T., Ferrara, K.: Ultrasonic detection of alphaVbeta3 expressing-cells with targeted contrast agents. Mol. Imaging 3, 125–134 (2004)

    Article  Google Scholar 

  8. Elenbaas, B., Weinberg, R.A.: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264, 169–184 (2001)

    Article  Google Scholar 

  9. Elliott, J.E., Macdonald, M., Nie, J., Bowman, C.N.: Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45, 1503–1510 (2004)

    Article  Google Scholar 

  10. Gilles, R.J., Raghunand, N., Karczmar, G.S., Bhujwalla, Z.M.: MRI of the tumor microenviroment. J. Mag. Res. Imag. 16, 430–450 (2002)

    Article  Google Scholar 

  11. Hall, T.J., Bilgen, M., Insana, M.F., Krouskop, T.A.: Phantom materials for elastography. IEEE Trans. Ultrason., Ferro., Freq. Control 44, 1355–1365 (1997)

    Article  Google Scholar 

  12. Hayes, W.C., Keer, L.M., Herrmann, G., Mockros, L.F.: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551 (1972)

    Article  Google Scholar 

  13. Kargel, C., Trummer, B., Plevnik, G., Pellot-Barakat, C., Mai, J.J., Insana, M.F.: Is ultrasonic imaging a sensitive indicator of spatially varying elastic anisotropy? In: Proc. IEEE Ultrason. Symp. 01CH37263C, pp. 1659–1662 (2001)

    Google Scholar 

  14. Madsen, E.L., Frank, G.R., Krouskop, T.A., Varghese, T., Kallel, F., Ophir, J.: Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms. Ultrason. Imaging 25, 17–38 (2000)

    Google Scholar 

  15. Nightingale, K., Soo, M.S., Nightingale, R., Trahey, G.: Acoustic radiation force impulse imaging. Ultrasound Med. Biol. 28, 227–235 (2002)

    Article  Google Scholar 

  16. Plewes, D.B., Bishop, J., Samani, A., Sciarretta, J.: Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys. Med. Biol. 45, 1591–1610 (2000)

    Article  Google Scholar 

  17. Pollack, G.H.: Cells, Gells, and the Engines of Life. Ebner and Sons, Seattle WA

    Google Scholar 

  18. Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P., Voytik-Harbin, S.L.: Tesile mechanical properties of 3-D type I collagen extracellular matrices with varied microstructure. Trans. ASME 124, 214–222 (2002)

    Google Scholar 

  19. Sinkus, R., Lorenzen, J., Schrader, D., Lorenzen, M., Dargatz, M., Holz, D.: High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45, 1649–1664 (2000)

    Article  Google Scholar 

  20. Sridhar, M., Du, H., Pellot-Barakat, C., Simon, S.I., Insana, M.F.: Ultrasonic mechanical relaxation imaging of pH in biopolymers. Proc. SPIE 5373, 929–932 (2004)

    Google Scholar 

  21. Sridhar, M., Du, H., Pellot-Barakat, C., Tsou, J., Insana, M.F.: Ultrasonic Imaging of Biochemical Changes in Tissues. In: Proc. IEEE Ultrasonics Symposium (in press)

    Google Scholar 

  22. Tschoegl, N.W.: Phenomenological Theory of Linear Viscoelastic Behavior. In: An Iintroduction. Springer, New York (1989)

    Google Scholar 

  23. Usha, R., Ramasami, T.: Effect of pH on dimensional stability of rat tail tendon collagen fiber. J. Appl. Polym. Sci. 75, 1577–1584 (2000)

    Article  Google Scholar 

  24. Voytik-Harbin, S.L., Rajwa, B., Robinson, J.P.: Three-dimensional imaging of extracellular matrix and extracellular matrix-cell interactions. Methods Cell Biol 63, 583–597 (2001)

    Article  Google Scholar 

  25. Ward, A.G., Courts, A.: The Science and Technology of Gelatin. Academic Press, New York (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sridhar, M., Insana, M.F. (2005). Imaging Tumor Microenvironment with Ultrasound. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_43

Download citation

  • DOI: https://doi.org/10.1007/11505730_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics