Skip to main content

Approximation Algorithms for the Max-coloring Problem

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

Given a graph G = (V, E) and positive integral vertex weights w : VN, the max-coloring problem seeks to find a proper vertex coloring of G whose color classes C 1, C 2, ..., C k , minimize \({\sum_{i=1}^{k}}{\it max}_{v\epsilon C{_{i}} {\it w}(v)}\). The problem arises in scheduling conflicting jobs in batches and in minimizing buffer size in dedicated memory managers.

In this paper we present three approximation algorithms and one inapproximability result for the max-coloring problem. We show that if for a class of graphs \({\mathcal G}\), the classical problem of finding a proper vertex coloring with fewest colors has a c-approximation, then for that class \({\mathcal G}\) of graphs, max-coloring has a 4c-approximation algorithm. As a consequence, we obtain a 4-approximation algorithm to solve max-coloring on perfect graphs, and well-known subclasses such as chordal graphs, and permutation graphs. We also obtain constant-factor algorithms for max-coloring on classes of graphs such as circle graphs, circular arc graphs, and unit disk graphs, which are not perfect, but do have a constant-factor approximation for the usual coloring problem. As far as we know, these are the first constant-factor algorithms for all of these classes of graphs. For bipartite graphs we present an approximation algorithm and a matching inapproximability result. Our approximation algorithm returns a coloring whose weight is within \(\frac{8}{7}\) times the optimal. We then show that for any ε > 0, it is impossible to approximate max-coloring on bipartite graphs to within a factor of \((\frac{8}{7} - \epsilon)\) unless P = NP. Thus our approximation algorithm yields an optimum approximation factor. Finally, we also present an exact sub-exponential algorithm and a PTAS for max-coloring on trees.

This research is partially supported by the National Science Foundation Grant DMS-0213305.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, NY (1980)

    MATH  Google Scholar 

  2. Govindarajan, R., Rengarajan, S.: Buffer allocation in regular dataflow networks: An approach based on coloring circular-arc graphs. In: Proceedings of the 2nd International Conference on High Performance Computing (1996)

    Google Scholar 

  3. Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Information Processing Letters 61, 77–81 (1997)

    Article  MathSciNet  Google Scholar 

  4. Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs. Algorithmica 37(3), 187–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kratochvil, J.: Precoloring extensions with a fixed color bound. Acta Mathematica Universitatsis Comenianae 62, 139–153 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem, http://www.cs.uiowa.edu/~sriram/papers/tbPerfectFull.ps

  7. Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring. In: Proceedings of The ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 562–571 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pemmaraju, S.V., Raman, R. (2005). Approximation Algorithms for the Max-coloring Problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_86

Download citation

  • DOI: https://doi.org/10.1007/11523468_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics