Skip to main content

Inverse Volume Rendering Approach to 3D Reconstruction from Multiple Images

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3851))

Included in the following conference series:

Abstract

This paper presents a method of image-based 3D modeling for intricately-shaped objects, such as a fur, tree leaves and human hair. We formulate the imaging process of these small geometric structures as volume rendering followed by image matting, and prove that the inverse problem can be solved by reducing the nonlinear equations to a large linear system. This estimation, which we call inverse volume rendering, can be performed efficiently through expectation maximization method, even when the linear system is under-constrained owing to data sparseness. We reconstruct object shape by a set of coarse voxels that can model the spatial occupancy inside each voxel. Experimental results show that intricately-shaped objects can successfully be modeled by our proposed method, and the original and other novel view-images of the objects can be synthesized by forward volume rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr, D.C., Poggio, T.: A computational theory of human stereo vision. Proceedings of the Royal Society of London B 204, 301–328 (1979)

    Article  Google Scholar 

  2. Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 353–363 (1993)

    Article  Google Scholar 

  3. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo. In: Proc. Computer Vision and Pattern Recognition 2001, pp. I: 103–110 (2001)

    Google Scholar 

  4. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 150–162 (1994)

    Article  Google Scholar 

  5. Seitz, S.M., Dyer, C.M.: Photorealistic scene reconstrcution by voxel coloring. In: Proc. Computer Vision and Pattern Recognition 1997, pp. 1067–1073 (1997)

    Google Scholar 

  6. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: Proc. International Conference on Computer Vision 1999, pp. 307–314 (1999)

    Google Scholar 

  7. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., McMillan, L.: Image-based 3D photography using opacity hulls. In: Proc. SIGGRAPH 2002, pp. 427–437 (2002)

    Google Scholar 

  8. de Bonet, J.S., Viola, P.A.: Roxels: Responsibility weighted 3d volume reconstruction. In: Proc. International Conference on Computer Vision 1999, pp. 418–425 (1999)

    Google Scholar 

  9. Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proc. SIGGRAPH 1996, pp. 259–268 (1996)

    Google Scholar 

  10. Ruzon, M.A., Tomasi, C.: Alpha estimation in natural images. In: Proc. Computer Vision and Pattern Recognition 2000, pp. 24–31 (2000)

    Google Scholar 

  11. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: Proc. Computer Vision and Pattern Recognition 2001, vol. 2, pp. 264–271 (2001)

    Google Scholar 

  12. Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. ACM Transactions on Graphics 23(3), 315–321 (2004)

    Article  Google Scholar 

  13. Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proc. SIGGRAPH 1994, pp. 451–458 (1994)

    Google Scholar 

  14. Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography, 306–316 (1984)

    Google Scholar 

  15. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging 13, 601–609 (1994)

    Article  Google Scholar 

  16. Shade, J., Gortler, S., wei He, L., Szeliski, R.: Layered depth images. In: Proc. SIGGRAPH 1998, pp. 231–242 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamazaki, S., Mochimaru, M., Kanade, T. (2006). Inverse Volume Rendering Approach to 3D Reconstruction from Multiple Images. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612032_42

Download citation

  • DOI: https://doi.org/10.1007/11612032_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31219-2

  • Online ISBN: 978-3-540-32433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics