Skip to main content

Optimal Size of Time Window in Nonlinear Features for Voice Quality Measurement

  • Conference paper
Nonlinear Analyses and Algorithms for Speech Processing (NOLISP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3817))

  • 715 Accesses

Abstract

In this paper we propose the use of nonlinear speech features to improve the voice quality measurement. We have tested a couple of features from the Dynamical System Theory, namely: the Correlation Dimension and the largest Lyapunov Exponent. In particular, we have studied the optimal size of time window for this type of analysis in the field of the characterization of the voice quality. Two systems of automatic detection of laryngeal pathologies, one of them including these features, have been implemented with the purpose of validating the usefulness of the suggested nonlinear features. We obtain slight improvements with respect to a classical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, J.B., de Leon, J., Alonso, I., Ferrer, M.A.: Automatic detection of pathologies in the voice by HOS based parameters. Proc. EUROASIP Journal on Applied Signal Processing 1, 275–284 (2001)

    Article  Google Scholar 

  2. Fröhlich, M., Michaelis, D., Srube, H.W.: Acoustic ‘Breathiness Measures’ in the description of Pathologic Voices. In: Porc. ICASSP 1998, Seattle, WA, vol. 2, pp. 937–940 (1998)

    Google Scholar 

  3. Gavidia, L., Hansen, J.: Direct Speech Feature Estimation Using an Iteractive EM Algorithm for Vocal Fold Pathology Detection. Porc. IEEE Transactions on Biomedical Engineering 43(4), 373–383 (1996)

    Article  Google Scholar 

  4. Feijoo, S., Hernandez, C., Carollo, A., Hermida, R.C., Moldes, E.: Acoustic Evaluation of glottal cancer based on short-term stability measures. In: Porc. IEEE Engineering in Medicine & Biology Society 11th Annual Internatioonal Conference, vol. 2, pp. 675–676 (1989)

    Google Scholar 

  5. Boyanov, B., Hadjitodorov Ivanov, S.: Analysis of voiced speech by means of bispectrum. Electronics Letters 27(24), 2267–2268 (1991)

    Article  Google Scholar 

  6. Boyanov, B., Hadjitodorov, S.: Acoustic analysis of pathological voices: a voice analysis system for screening of laryngeal diseases. Proc. IEEE Engineering in Medical and Biology 16(4), 74–82 (1997)

    Article  Google Scholar 

  7. Hansen, J.H.L., Gavidia, L., James, F.: A nonlinear operator-based speech feature analysis method with application to vocal fold pathology assessment. Proc. IEEE Transactions on Biomedical Engineering 45(3), 300–313 (1998)

    Article  Google Scholar 

  8. Rosa, M.O., Pereria, J.C., Carvalho, C.P.L.F.: Evaluation of neural classifier using statistics methods for identification of laryngeal pathologies. Proc. Neural Networks 1, 220–225 (1998)

    Google Scholar 

  9. Wallen, E.J., Hansen, J.H.L.: A Screening test for speech pathology assessment using objective quality measures. In: Proc. International Conference on Spoken Language Processing, Philadelphia, PA, vol. 2, pp. 776–779 (1996)

    Google Scholar 

  10. Banbrook, M., McLaughlin, S., Mann, I.: Speech Characterization and Synthesis by Nonlinear Methods. Proc.IEEE Transactions on Speech and Audio Processing 7(1) (January 1999)

    Google Scholar 

  11. Pitsikalis, V., Kokkinos, I., Maragos, P.: Nonlinear Analysis of Speech Signals: Generalized Dimensions and Lyapunov Exponents. In: Proc EUROSPEECH-2003, Geneva, pp. 817–820 (2003)

    Google Scholar 

  12. Jiang, J.J., Zhang, Y.: Nonlinear dynamic analysis of speech from pathological subjects. Proc IEEE Electronics Letters 38(6) (March 2002)

    Google Scholar 

  13. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package, CHAOS 9, 413 (1999)

    Google Scholar 

  14. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  15. Koreman, J., Pützer, M.: Finding Correlates of Vocal Fold Adduction Deficiencies, Phonus 3, Institute of Phonetics, University of the Saarland, pp. 155-178 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, J.B., Díaz-de-María, F., Travieso, C.M., Ferrer, M.A. (2006). Optimal Size of Time Window in Nonlinear Features for Voice Quality Measurement. In: Faundez-Zanuy, M., Janer, L., Esposito, A., Satue-Villar, A., Roure, J., Espinosa-Duro, V. (eds) Nonlinear Analyses and Algorithms for Speech Processing. NOLISP 2005. Lecture Notes in Computer Science(), vol 3817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613107_18

Download citation

  • DOI: https://doi.org/10.1007/11613107_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31257-4

  • Online ISBN: 978-3-540-32586-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics