Skip to main content

The 2005 PASCAL Visual Object Classes Challenge

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3944))

Abstract

The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1475–1490 (2004)

    Article  Google Scholar 

  2. Barker, M., Rayens, W.: Partial least squares for discrimination. Journal of Chemometrics 17, 166–173 (2003)

    Article  Google Scholar 

  3. Barnard, K., Duygulu, P., Forsyth, D., Freitas, N., Blei, D., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

    MATH  Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  5. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm

  7. Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogrambased image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  8. Comaniciu, D., Meer, P.: Distribution free decomposition of multivariate data. Pattern Analysis and Applications 2, 22–30 (1999)

    Article  MATH  Google Scholar 

  9. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the 8th IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001, vol. 1, pp. 438–445 (2001)

    Google Scholar 

  10. Csurka, G., Dance, C., Fan, L., Williamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, pp. 59–74 (2004)

    Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, pp. 886–893 (2005)

    Google Scholar 

  12. Deselaers, T., Keysers, D., Ney, H.: Discriminative training for object recognition using image patches. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp. 157–162 (2005)

    Google Scholar 

  13. Deselaers, T., Keysers, D., Ney, H.: Improving a discriminative approach to object recognition using image patches. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 326–333. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, October 2003, pp. 634–640 (2003)

    Google Scholar 

  15. Dorkó, G., Schmid, C.: Object class recognition using discriminative local features. Technical report, INRIA (February 2005)

    Google Scholar 

  16. Eichhorn, J., Chapelle, O.: Object categorization with SVM: kernels for local features. Technical report, Max Planck Institute for Biological Cybernetics (July 2004)

    Google Scholar 

  17. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceedings of the Workshop on Generative-Model Based Vision, Washington, DC, USA (June 2004)

    Google Scholar 

  18. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (June 2003)

    Google Scholar 

  19. Fritz, M., Leibe, B., Caputo, B., Schiele, B.: Integrating representative and discriminant models for object category detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)

    Google Scholar 

  20. Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1408–1423 (2004)

    Article  Google Scholar 

  21. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  22. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, pp. 137–142. Springer, Heidelberg (1998)

    Google Scholar 

  23. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. The MIT Press, Cambridge (1999)

    Google Scholar 

  24. Jurie, F., Triggs, W.: Creating efficient codebooks for visual recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (2005)

    Google Scholar 

  25. Kondor, R., Jebara, T.: A kernel between sets of vectors. In: Proceedings of the 20th International Conference on Machine Learning, Washingon, DC, USA (2003)

    Google Scholar 

  26. Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Special Issue on Intelligent Multimedia Processing 13(4), 841–853 (2002)

    Article  MATH  Google Scholar 

  27. Larlus, D.: Creation de vocabulaires visuels efficaces pour la categorization d’images. Master’s thesis, Image Vision Robotic, INPG and UJF (June 2005)

    Google Scholar 

  28. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic, May 2004, pp. 17–32 (2004)

    Google Scholar 

  29. Leibe, B., Schiele, B.: Scale invariant object categorization using a scale-adaptive mean-shift search. In: Proceedings of the 26th DAGM Annual Pattern Recognition Symposium, Tuebingen, Germany (August 2004)

    Google Scholar 

  30. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA (June 2005)

    Google Scholar 

  31. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  32. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  33. Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.R.D.: Support vector machine to synthesise kernels. In: Proceedings of the Sheffield Machine Learning Workshop, Sheffield, UK (2004)

    Google Scholar 

  34. Mettu, R.R., Plaxton, C.G.: The online median problem. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 339. IEEE Computer Society, Los Alamitos (2000)

    Chapter  Google Scholar 

  35. Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)

    Google Scholar 

  36. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, June 2003, vol. 2, pp. 257–263 (2003)

    Google Scholar 

  37. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  38. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  39. Opelt, A., Fussenegger, A., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, vol. 2, pp. 71–84 (2004)

    Google Scholar 

  40. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  41. Seemann, E., Leibe, B., Mikolajczyk, K., Schiele, B.: An evaluation of local shape-based features for pedestrian detection. In: Proceedings of the 16th British Machine Vision Conference, Oxford, UK (2005)

    Google Scholar 

  42. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  43. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, pp. 18–32 (2000)

    Google Scholar 

  44. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: An in-depth study. Technical report, INRIA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Everingham, M. et al. (2006). The 2005 PASCAL Visual Object Classes Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_8

Download citation

  • DOI: https://doi.org/10.1007/11736790_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33427-9

  • Online ISBN: 978-3-540-33428-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics