Skip to main content

A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

The concept of backbone variables in the satisfiability problem has been recently introduced as a problem structure property and shown to influence its complexity. This suggests that the performance of stochastic local search algorithms for satisfiability problems can be improved by using backbone information. The Partial MAX-SAT Problem (PMSAT) is a variant of MAX-SAT which consists of two CNF formulas defined over the same variable set. Its solution must satisfy all clauses of the first formula and as many clauses in the second formula as possible. This study is concerned with the PMSAT solution in setting a co-evolutionary stochastic local search algorithm guided by an estimated backbone variables of the problem. The effectiveness of our algorithm is examined by computational experiments. Reported results for a number of PMSAT instances suggest that this approach can outperform state-of-the-art PMSAT techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem instances. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 256–261. AAAI Press, Menlo Park (2000)

    Google Scholar 

  2. Bailleux, O., Marquis, P.: DISTANCE-SAT: complexity and algorithms. In: Proceedings of the 16th National Conference on Artificial Intelligence (AAAI 1999), pp. 642–647. AAAI Press, Menlo Park (1999)

    Google Scholar 

  3. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 59, 381–384 (1993)

    Article  Google Scholar 

  4. Beck, J.C., Fox, M.S.: A generic framework for constraint-directed search and scheduling. AI Magazine 19(4), 101–130 (1998)

    Google Scholar 

  5. Boettcher, S., Percus, A.G.: Nature’s way of optimizing. Artificial Intelligence 119, 275–286 (2000)

    Article  MATH  Google Scholar 

  6. Bollobas, B., Borgs, C., Chayes, J., Kim, J.H., Wilson, D.B.: The scaling window of the 2-SAT transition. Random Structures and Algorithms, 201–256 (2001)

    Google Scholar 

  7. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. Lisp and Symbolic Computation 5(3), 223–270 (1992)

    Article  MATH  Google Scholar 

  8. Cha, B., Iwama, K., Kambayashi, Y., Miyasaki, S.: Local search for Partial MAX-SAT. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 263–265. AAAI Press, Menlo Park (1997)

    Google Scholar 

  9. Cheesman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 331–337 (1991)

    Google Scholar 

  10. Climer, S., Zhang, W.: Searching for backbones and fat: a limit-crossing approach with applications. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 707–712. AAAI Press, Menlo Park (2002)

    Google Scholar 

  11. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulæ. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 248–253 (2001)

    Google Scholar 

  12. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence 58(1), 21–70 (1992)

    Article  MathSciNet  Google Scholar 

  13. Menaï, M.B., Batouche, M.: Efficient initial solution to extremal optimization algorithm for weighted MAXSAT problem. In: Chung, P.W.H., Hinde, C.J., Ali, M. (eds.) IEA/AIE 2003. LNCS, vol. 2718, pp. 592–603. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Menaï, M.B.: Solution reuse in Partial MAX-SAT Problem. In: Proceedings of IEEE International Conference on Information Reuse and Integration (IRI 2004), pp. 481–486 (2004)

    Google Scholar 

  15. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proceedings of the 10th National Conference on Artificial Intelligence (AAAI 1992), pp. 459–465. AAAI Press, Menlo Park (1992)

    Google Scholar 

  16. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic Phase Transition. Nature 400, 133–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 240–245. AAAI Press, Menlo Park (1997)

    Google Scholar 

  18. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI 1994), pp. 337–343. AAAI Press, Menlo Park (1994)

    Google Scholar 

  19. Singer, J., Gent, I.P., Smaill, A.: Backbone fragility and the local search cost peak. Journal of Artificial Intelligence Research 12, 235–270 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 254–259 (2001)

    Google Scholar 

  21. Szedmak, S.: How to find more efficient initial solutions for searching. RUTCOR Research Report 49-2001, Rutgers Center for Operations Research, Rutgers University, Piscataway, NJ, USA (2001)

    Google Scholar 

  22. Telelis, O., Stamatopoulos, P.: Heuristic backbone sampling for maximum satisfiability. In: Proceedings of the 2nd Hellenic Conference on Artificial Intelligence, pp. 129–139 (2002)

    Google Scholar 

  23. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1173–1178 (2003)

    Google Scholar 

  24. Xu, H., Rutenbar, R.A., Sakallah, K.: sub-SAT: A formulation for relaxed boolean satisfiability with applications in routing. In: Proceedings of the International Symposium on Physical Design (ISPD 2002), pp. 182–187 (2002)

    Google Scholar 

  25. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum satisfiability. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1179–1186 (2003)

    Google Scholar 

  26. http://dimacs.rutgers.edu/Challenges/

  27. http://www.informatik.tudarmstadt.de/AI/SATLIB

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Menaï, M.E.B., Batouche, M. (2006). A Backbone-Based Co-evolutionary Heuristic for Partial MAX-SAT. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_14

Download citation

  • DOI: https://doi.org/10.1007/11740698_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics