Skip to main content

Discriminative Learning Can Succeed Where Generative Learning Fails

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

Generative algorithms for learning classifiers use training data to separately estimate a probability model for each class. New items are then classified by comparing their probabilities under these models. In contrast, discriminative learning algorithms try to find classifiers that perform well on all the training data.

We show that there is a learning problem that can be solved by a discriminative learning algorithm, but not by any generative learning algorithm (given minimal cryptographic assumptions). This statement is formalized using a framework inspired by previous work of Goldberg [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)

    Google Scholar 

  2. Fischer, P., Pölt, S., Simon, H.U.: Probably almost Bayes decisions. In: Proceedings of the Fourth Annual COLT, pp. 88–94 (1991)

    Google Scholar 

  3. Goldberg, P.W.: When can two unsupervised learners achieve PAC separation? In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS, vol. 2111, p. 303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the Association for Computing Machinery 33(4), 792–807 (1986)

    MathSciNet  Google Scholar 

  5. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in NIPS 11, pp. 487–493. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  6. Jebara, T.: Machine learning: discriminative and generative. Kluwer, Dordrecht (2003)

    Google Scholar 

  7. Long, P., Servedio, R.: Discriminative Learning can Succeed where Generative Learning Fails (full version), available at: http://www.cs.columbia.edu/~rocco/papers/discgen.html

  8. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: NIPS (2001)

    Google Scholar 

  9. Raina, R., Shen, Y., Ng, A.Y., McCallum, A.: Classification with hybrid generative/discriminative models. In: NIPS (2004)

    Google Scholar 

  10. Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Valiant, L.G.: A theory of the learnable. In: Proc. 16th Annual ACM Symposium on Theory of Computing (STOC), pp. 436–445. ACM Press, New York (1984)

    Google Scholar 

  12. Vapnik, V.: Estimations of dependences based on statistical data. Springer, Heidelberg (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Long, P.M., Servedio, R.A. (2006). Discriminative Learning Can Succeed Where Generative Learning Fails. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_25

Download citation

  • DOI: https://doi.org/10.1007/11776420_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics