Skip to main content

Fuzziness Driven Adaptive Sampling for Monte Carlo Global Illuminated Rendering

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

Monte Carlo is the only choice for a physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an interesting means to reduce noise, which is one of the major problems of general Monte Carlo global illumination algorithms. In this paper, we make use of the fuzzy uncertainty existing in image synthesis and exploit the formal concept of fuzziness in fuzzy set theory to evaluate pixel quality to run adaptive sampling efficiently. Experimental results demonstrate that our novel method can perform significantly better than classic ones. To our knowledge, this is the first application of the fuzzy technique to global illumination image synthesis problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenberg, D.P.: A framework for realistic image synthesis. Communications of the ACM 42(8) (1999)

    Google Scholar 

  2. Kajiya, J.T.: The rendering equation. Computer Graphics 20(4), 143–150 (1986)

    Article  Google Scholar 

  3. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall Inc., Englewood Cliffs (1997)

    MATH  Google Scholar 

  4. Whitted, T.: An Improved Illumination Model for Shaded Display. Communications of the ACM 32(6), 343–349 (1980)

    Article  Google Scholar 

  5. Painter, J., Sloan, K.: Antialiased Ray Tracing by Adaptive Progressive Refinement. SIGGRAPH 1989 23(3), 281–288 (1989)

    Article  Google Scholar 

  6. Dippe, M.A.Z., Wold, E.H.: Antialiasing through Stochastic Sampling. SIGGRAPH 1985 19(3), 69–78 (1985)

    Article  Google Scholar 

  7. Lee, M.E., Redner, R.A., Uselton, S.P.: Statistically optimized sampling for distributed ray tracing. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp. 61–68 (1985)

    Google Scholar 

  8. Purgathofer, W.: A Statistical Method for Adaptive Stochastic Sampling. SIGGRAPH 1987 11(2), 157–162 (1987)

    Google Scholar 

  9. Kirk, D., Arvo, J.: Unbiased variance reduction for global illumination. In: Proceedings of the 2nd Eurographics Workshop on Rendering (May 1991)

    Google Scholar 

  10. Rigau, J., Feixas, M., Sbert, M.: New Contrast Measures for Pixel Supersampling. In: Proceedings of CGI 2002, pp. 439–451 (July 2002)

    Google Scholar 

  11. Rigau, J., Feixas, M., Sbert, M.: Refinement Criteria Based on f-Divergences. In: Proceedings of Eurographics Symposium on Rendering (June 2003)

    Google Scholar 

  12. Mitchell, D.P.: Generating Antialiased Images at Low Sampling Densities. SIGGRAPH 1987 21(4), 65–72 (1987)

    Article  Google Scholar 

  13. Simmons, M., Sequin, C.: Tapestry: A Dynamic Mesh Based Display Representation for Interactive Rendering. In: Proceedings of the 11th Eurographics Workshop on Rendering (2000)

    Google Scholar 

  14. Tamstorf, R., Jensen, H.W.: Adaptive Sampling and Bias Estimation in Path Tracing. In: Proc. of Eurographics Workshop on Rendering 1997, pp. 285–295 (1997)

    Google Scholar 

  15. Bolin, M.R., Meyer, G.W.: A perceptually based adaptive sampling algorithm. In: Proceedings of SIGGRAPH 1998, pp. 299–309 (July 1998)

    Google Scholar 

  16. Greenberg, D.P., Torrance, K., Shirley, P., Arvo, J., Ferwerda, J.A., Pattanaik, S., Lafortune, E., Walter, B., Foo, S., Trumbore, B.: A framework for realistic image synthesis. In: Proceedings of SIGGRAPH 1997, pp. 477–494 (1997)

    Google Scholar 

  17. Farrugia, J.P., Peroche, B.: A Progressive Rendering Algorithm Using an Adaptive Perceptually Based Image Metric. In: Proceedings of Eurographics 2004 (2004)

    Google Scholar 

  18. Castro, F., Feixas, M., Sbert, M.: Fuzzy Random Walk. In: Computer Graphics International 2002 (2002)

    Google Scholar 

  19. Liang, K.H., Mao, J.J.W.: Image Thresholding By Minimizing the Measures of Fuzziness. Pattern Recognition 28(1), 41–51 (1995)

    Article  Google Scholar 

  20. O’Sullivan, C., Howlett, S., McDonnell, R., Morvan, Y., O’Conor, K.: Perceptually Adaptive Graphics. State of The Art Report. In: EUROGRAPHICS 2004 (2004)

    Google Scholar 

  21. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision (2nd edition). Thomson Learning Vocational (1998)

    Google Scholar 

  22. Pal, S.K.: Fuzzy Sets in Image processing and Recognition. In: Proceedings of the 1992 IEEE International Conference on Fuzzy Systems (1992)

    Google Scholar 

  23. Pal, N.R., Bezdek, J.C.: Measuring Fuzzy Uncertainty. IEEE Transactions on Fuzzy Systems 2(2), 107–118 (1994)

    Article  Google Scholar 

  24. Zadeh, L.A.: From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46(1), 105–119 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 4(2), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  26. Sharma, G., Trussell, H.J.: Digital Color Imaging. IEEE Transactions on Image Processing 6(7), 901–932 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Q., Sbert, M., Pan, Z., Wang, W., Xing, L. (2006). Fuzziness Driven Adaptive Sampling for Monte Carlo Global Illuminated Rendering. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_13

Download citation

  • DOI: https://doi.org/10.1007/11784203_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics