Skip to main content

Protecting Data Privacy Through Hard-to-Reverse Negative Databases

  • Conference paper
Information Security (ISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4176))

Included in the following conference series:

Abstract

The paper extends the idea of negative representations of information for enhancing privacy. Simply put, a set DB of data elements can be represented in terms of its complement set. That is, all the elements not in DB are depicted and DB itself is not explicitly stored.

review the negative database (NDB) representation scheme for storing a negative image compactly and propose a design for depicting a multiple record DB using a collection of NDBs—in contrast to the single NDB approach of previous work. Finally, we present a method for creating negative databases that are hard to reverse in practice, i.e., from which it is hard to obtain DB, by adapting a technique for generating 3-SAT formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Achlioptas, Beame, and Molloy. A sharp threshold in proof complexity. In STOC: ACM Symposium on Theory of Computing (STOC), 2001.

    Google Scholar 

  2. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem instances. In: Proceedings of AAAI 2000 and IAAI 2000, pp. 256–261. AAAI Press, Menlo Park (July 30–3, 2000)

    Google Scholar 

  3. Achlioptas, D., Peres: The threshold for random k-SAT is 2k log 2 - O(k). JAMS: Journal of the American Mathematical Society 17 (2004)

    Google Scholar 

  4. Adam, N.R., Wortman, J.C.: Security-control methods for statistical databases. ACM Computing Surveys 21(4), 515–556 (1989)

    Article  Google Scholar 

  5. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Symposium on Principles of Database Systems, pp. 247–255 (2001)

    Google Scholar 

  6. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD Conference on Management of Data, pp. 439–450. ACM Press, New York (2000)

    Chapter  Google Scholar 

  7. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Blakley, G.R., Meadows, C.: A database encryption scheme which allows the computation of statistics using encrypted data. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 116–122. IEEE CS Press, Los Alamitos (1985)

    Google Scholar 

  9. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 289–299. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  10. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Chin, F.: Security problems on inference control for sum, max, and min queries. J. ACM 33(3), 451–464 (1986)

    Article  MathSciNet  Google Scholar 

  12. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: A survey. In: Du, Gu, Pardalos (eds.) Satisfiability Problem: Theory and Applications, Dimacs Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 1–17. American Mathematical Society (1997)

    Google Scholar 

  13. Denning, D.: Cryptography and Data Security. AddisonWesley, Reading (1982)

    MATH  Google Scholar 

  14. Denning, D.E., Schlorer, J.: Inference controls for statistical databases. Computer 16(7), 69–82 (1983)

    Article  Google Scholar 

  15. Dobkin, D., Jones, A., Lipton, R.: Secure databases: Protection against user influence. ACM Transactions on Database Systems 4(1), 97–106 (1979)

    Article  Google Scholar 

  16. Esponda, F.: Negative Representations of Information. PhD thesis, University of New Mexico (2005)

    Google Scholar 

  17. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: Online negative databases. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Esponda, F., Ackley, E.S., Forrest, S., Helman, P.: Online negative databases (with experimental results). International Journal of Unconventional Computing 1(3), 201–220 (2005)

    Google Scholar 

  19. Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through negative representations of data. Technical report, University of New Mexico (2004)

    Google Scholar 

  20. Esponda, F., Forrest, S., Helman, P.: Negative representations of information. International Journal of Information Security (submitted, 2004)

    Google Scholar 

  21. Even, S., Yacobi, Y.: Cryptography and np-completeness. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 195–207. Springer, Heidelberg (1980)

    Google Scholar 

  22. Feigenbaum, J., Grosse, E., Reeds, J.A.: Cryptographic protection of membership lists  9(1), 16–20 (1992)

    Google Scholar 

  23. Feigenbaum, J., Liberman, M.Y., Wright, R.N.: Cryptographic protection of databases and software. In: Distributed Computing and Cryptography, pp. 161–172. American Mathematical Society (1991)

    Google Scholar 

  24. Fiorini, C., Martinelli, E., Massacci, F.: How to fake an RSA signature by encoding modular root finding as a SAT problem. Discrete Appl. Math. 130(2), 101–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI 1994), pp. 105–109 (1994)

    Google Scholar 

  26. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 12–24. ACM Press, New York (1989)

    Chapter  Google Scholar 

  29. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. In: 30th annual Symposium on Foundations of Computer Science, Research Triangle Park, NC, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, pp. 236–241. IEEE Computer Society Press, Los Alamitos (October 30–November 1, 1989)

    Chapter  Google Scholar 

  30. Jia, H., Moore, C., Strain, D.: Generating hard satisfiable formulas by hiding solutions deceptively. In: AAAI (2005)

    Google Scholar 

  31. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C., Selman, B., Stickel, M.E.: Balance and filtering in structured satisfiable problems. In: IJCAI, pp. 351–358 (2001)

    Google Scholar 

  32. Matloff, N.S.: Inference control via query restriction vs. data modification: a perspective. In: On Database Security: Status and Prospects, pp. 159–166. North-Holland Publishing Co., Amsterdam (1988)

    Google Scholar 

  33. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knapsacks.  IT-24, 525–530 (1978)

    Google Scholar 

  34. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: Proc. FOCS 2003, p. 80 (2003)

    Google Scholar 

  35. Mitchell, D., Selman, B., Levesque, H.: Problem solving: Hardness and easiness - hard and easy distributions of SAT problems. In: Proceeding of (AAAI 1992), pp. 459–465. AAAI Press, Menlo Park, California (1992)

    Google Scholar 

  36. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, pp. 33–43. ACM Press, New York (May 15–17, 1989)

    Chapter  Google Scholar 

  37. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Pomerance, C., Goldwasser, S. (eds.) Cryptology and Computational Number Theory, Proceedings of symposia in applied mathematics. AMS short course lecture notes, vol. 42, pp. 75–88. pub-AMS (1990)

    Google Scholar 

  38. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized queries on a committed database. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Shaw, P., Stergiou, K., Walsh, T.: Arc consistency and quasigroup completion. In: Proceedings of ECAI 1998 Workshop on Non-binary Constraints (1998)

    Google Scholar 

  40. Tendick, P., Matloff, N.: A modified random perturbation method for database security. ACM Trans. Database Syst. 19(1), 47–63 (1994)

    Article  Google Scholar 

  41. Wayner, P.: Translucent Databases. Flyzone Press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esponda, F., Ackley, E.S., Helman, P., Jia, H., Forrest, S. (2006). Protecting Data Privacy Through Hard-to-Reverse Negative Databases. In: Katsikas, S.K., LĂłpez, J., Backes, M., Gritzalis, S., Preneel, B. (eds) Information Security. ISC 2006. Lecture Notes in Computer Science, vol 4176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11836810_6

Download citation

  • DOI: https://doi.org/10.1007/11836810_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38341-3

  • Online ISBN: 978-3-540-38343-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics