Skip to main content

Computational Model of a Central Pattern Generator

  • Conference paper
Computational Methods in Systems Biology (CMSB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Included in the following conference series:

Abstract

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the foregut during feeding. This CPG is a multifunctional circuit and generates at least two types of buccal motor patterns (BMPs), one that mediates ingestion (iBMP) and another that mediates rejection (rBMP). The present study used a computational approach to examine the ways in which an ensemble of identified cells and synaptic connections function as a CPG. Hodgkin-Huxley-type models were developed that mimicked the biophysical properties of these cells and synaptic connections. The results suggest that the currently identified ensemble of cells is inadequate to produce rhythmic neural activity and that several key elements of the CPG remain to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cropper, E.C., Evans, C.G., Hurwitz, I., Jing, J., Proekt, A., Romero, A., Rosen, S.C.: Feeding Neural Networks in the Mollusc Aplysia. Neurosignals 13, 70–86 (2004)

    Article  Google Scholar 

  2. Elliott, C., Susswein, A.J.: Comparative Neuroethology of Feeding Control in Mollusc. J. Exp. Biol. 205, 877–896 (2002)

    Google Scholar 

  3. Brembs, B., Lorenzetti, F., Baxter, D.A., Byrne, J.H.: Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms. Science 296, 1706–1709 (2002)

    Article  Google Scholar 

  4. Church, P.J., Lloyd, P.E.: Activity of Multiple Identified Motor Neurons Recorded Intracel-lularly During Evoked Feeding-Like Motor Programs in Aplysia. J. Neurophysiol. 72, 1794–1809 (1994)

    Google Scholar 

  5. Kabotyanksi, E.A., Baxter, D.A., Cushman, S.J., Byrne, J.H.: Modulation of Fictive Feeing by Dopamine and Serotonin in Aplysia. J. Neurophysiol. 83, 374–392 (2000)

    Google Scholar 

  6. Morton, D.W., Chiel, H.J.: In Vivo Buccal Nerve Activity that Distinguishes Ingestion from Rejection Can Be Used to Predict Behavioral Transitions in Aplysia. J. Comp. Physiol. 172, 17–32 (1993a)

    Article  Google Scholar 

  7. Hurwitz, I., Kupfermann, I., Susswein, A.J.: Different Roles of Neurons B63 and B34 that Are Active During the Protraction Phase of Buccal Motor Programs In Aplysia Californica.. J. Neurophysiol. 78, 1305–1319 (1997)

    Google Scholar 

  8. Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity Patterns of the B31/32 Pattern Initiators Innervating the I2 Muscle of the Buccal Mass During Normal Feeding Movements in Aplysia Californica. J. Neurophysiol. 75, 1309–1326 (1996)

    Google Scholar 

  9. Morton, D.W., Chiel, H.J.: The Timing of Activity in Motor Neurons that Produce Radula Movements Distinguishes Ingestion from Rejection in Aplysia. J. Comp. Physiol. 173, 519–536 (1993b)

    Article  Google Scholar 

  10. Nargeot, R., Baxter, D.A., Byrne, J.H.: Contingent-Dependent Enhancement of Rhythmic Motor Programs: an in Vitro Analog of Operant Conditioning. J. Neurosci. 17, 8093–8105 (1997)

    Google Scholar 

  11. Nargeot, R., Baxter, D.A., Byrne, J.H.: Correlation between Activity in Neuron B52 and T- wo Features of Fictive Feeding in Aplysia. Neurosci. Lett. 328, 85–88 (2002)

    Article  Google Scholar 

  12. Deodhar, D., Kupfermann, I., Rosen, S.C., Weiss, K.R.: Design Constraints in Neuronal Circuits Underlying Behavior. In: Greenspan, R.J., Kyriacou, C.P. (eds.) Flexibility and Constraint in Behavioral Systems, pp. 41–52. John Wiley & Sons Ltd., New York (1993)

    Google Scholar 

  13. Kabotyanski, E.A., Baxter, D.A., Byrne, J.H.: Experimental and Computational Analyses of a Central Pattern Generator Underlying Aspects of Feeding Behavior of Aplysia. Netherlands J. Zool. 44, 357–373 (1994)

    Article  Google Scholar 

  14. Kupfermann, I., Deodhar, D., Teyke, T., Rosen, S.C., Nagahama, T., Weiss, K.R.: Behavioral Switching of Biting and of Directed Head Turning in Aplysia: Explorations Using Neural Network Models. Acta Biol. Hung. 43, 315–328 (1992)

    Google Scholar 

  15. Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H., Baxter, D.A.: Mechanisms Underlying Fictive Feeding in Aplysia: Coupling Between a Large Neuron with Plateau Potentials and a Spiking Neuron. J. Neurophysiol. 87, 2307–2323 (2002)

    Google Scholar 

  16. Ziv, I., Baxter, D.A., Byrne, J.H.: Simulator for Neural Networks and Action Potentials: Description and Application. J. Neurophysiol. 71, 294–308 (1994)

    Google Scholar 

  17. Av-Ron, E., Byrne, J.H., Baxter, D.A.: Teaching Basic Principles of Neuroscience with Computer Simulations. J. Undergrad. Neurosci. Edu. (in press, 2006)

    Google Scholar 

  18. Baxter, D.A., Byrne, J.H.: Simulator for Neural Networks and Action Potentials (SNNAP): Description and Application. In: Crasto, C. (ed.) Methods in Molecular Biology: Neuroinformatics. Humana Press, Totowa (in press, 2006)

    Google Scholar 

  19. Hurwitz, I., Susswein, A.J.: B64, a Newly Identified Central Pattern Generator Element Producing a Phase Switch from Protraction to Retraction in Buccal Motor Programs of Aplysia Californica. J. Neurophysiol. 75, 1327–1344 (1996)

    Google Scholar 

  20. Kabotyanski, E.A., Baxter, D.A., Byrne, J.H.: Identification and Characterization of Catecholaminergic Neuron B65 That Initiates And Modifies Patterned Activity in the Buccal Ganglia of Aplysia. J. Neurophysiol. 79, 605–621 (1998)

    Google Scholar 

  21. Bernard, C., Axelrad, H., Giraud, B.G.: Effects Of Collateral Inhibition in a Model of the Immature Rat Cerebellar Cortex: Multineuron Correlations. Brain Res. Cogn. Brain Res. 1, 100–122 (1993)

    Article  Google Scholar 

  22. Bhalla, U.S., Bower, J.M.: Exploring Parameter Space in Detailed Single Neuron Models: Simulations of the Mitral and Granule Cells of the Olfactory Bulb. J. Neurophysiol. 69, 1948–1965 (1993)

    Google Scholar 

  23. Edwards, J.A., Palsson, B.O.: Robustness Analysis of the Escherichia Coli Metabolic Network. Biotechnol. Prog. 16, 927–939 (2000)

    Article  Google Scholar 

  24. Arshavsky, Y.I., Deliagina, T.G., Orlovsky, G.N.: Pattern Generation. Curr. Opin. Neurobiol. 7, 781–789 (1997)

    Article  Google Scholar 

  25. Cropper, E.C., Weiss, K.R.: Synaptic Mechanisms in Invertebrate Pattern Generation. Curr. Opin. Neurobiol. 6, 833–841 (1996)

    Article  Google Scholar 

  26. Marder, E., Calabrese, R.L.: Principles of Rhythmic Motor Pattern Generation. Physiol. Rev. 76, 687–717 (1996)

    Google Scholar 

  27. Marder, E., Bucher, D., Schulz, D.J., Taylor, A.L.: Invertebrate Central Pattern Generation Moves Along. Current Biology 15, R685–R699 (2005)

    Article  Google Scholar 

  28. Stein, P.S.G., Grillner, S., Selverton, A.I., Stuart, D.G. (eds.): Neurons, Networks and Motor Behaviors. The MIT Press, Cambridge (1998)

    Google Scholar 

  29. Abbott, L.F., Marder, E.: Modeling Small Networks. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling: from Ions to Networks, 2nd edn., pp. 361–409. The MIT Press, Cambridge (1998)

    Google Scholar 

  30. Calabrese, R.L.: Oscillation in Motor Pattern-Generating Networks. Curr. Opin. Neurobiol. 5, 816–823 (1995)

    Article  Google Scholar 

  31. Marder, E., Abbott, L.F.: Theory in Motion. Curr. Opin. Neurobiol. 5, 832–840 (1995)

    Article  Google Scholar 

  32. Marder, E., Kopell, N., Sigvardt, K.: How Computation Aids in Understanding Biological Networks. In: Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.G. (eds.) Neurons, Networks, And Motor Behaviors, pp. 139–149. The MIT Press, Cambridge (1998)

    Google Scholar 

  33. Nargeot, R., Baxter, D.A., Byrne, J.H.: In Vitro Analogue of Operant Conditioning n Aplysia: I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron. J. Neurosci. 15, 2247–2260 (1999a)

    Google Scholar 

  34. Nargeot, R., Baxter, D.A., Byrne, J.H.: In Vitro Analogue of Operant Conditioning in Aplysia: II. Modifications of the Functional Dynamics of an Identified Neuron Mediate Motor Pattern Selection. J. Neurosci. 15, 2261–2272 (1999b)

    Google Scholar 

  35. Jing, J., Weiss, K.R.: Neural Mechanisms of Motor Program Switching in Aplysia. J. Neurosci. 15, 7349–7362 (2001)

    Google Scholar 

  36. Warman, E.N., Chiel, H.J.: A New Technique for Chronic Single-Unit Extracellular Recording in Freely Behaving Animals Using Pipette Electrodes. J. Neurosci. Methods 57, 161–169 (1995)

    Article  Google Scholar 

  37. Teyke, T., Rosen, S.C., Weiss, K.R., Kupfermann, I.: Dopaminergic Neuron B20 Gen rates Neuronal Activity in the Feeding Motor Circuitry of Aplysia. Brain Res. 630, 226–237 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cataldo, E., Byrne, J.H., Baxter, D.A. (2006). Computational Model of a Central Pattern Generator. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_17

Download citation

  • DOI: https://doi.org/10.1007/11885191_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics