Skip to main content

A Mobile Computing Approach for Navigation Purposes

  • Conference paper
Web and Wireless Geographical Information Systems (W2GIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4295))

Abstract

The mobile computing technology has been rapidly increased in the past decade; however there still exist some important constraints which complicate the use of mobile information systems. The limited resources on the mobile computing would restrict some features that are available on the traditional computing technology. In almost all previous works it is assumed that the moving object cruises within a fixed altitude layer, with a fixed target point, and its velocity is predefined. In addition, accessibility to up-to-date knowledge of the whole mobile users and a global time frame are prerequisite. The lack of two last conditions in a mobile environment is our assumptions. In this article we suggest an idea based on space and time partitioning in order to provide a paradigm that treats moving objects in mobile GIS environment. A method for finding collision-free path based on the divide and conquer idea is proposed. The method is, to divide space-time into small parts and solve the problems recursively and the combination of the solutions solves the original problem. We concentrate here on finding a near optimal collision-free path because of its importance in robot motion planning, intelligent transportation system (ITS), and any mobile autonomous navigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M.: Natural Philosophy of Cause and Chance. Dover Publications, New York (1949)

    Google Scholar 

  2. Caduff, D.: Sketch-Based Queries In Mobile GIS Environments, Maine. Spatial Information Science and Engineering, Main, p. 114. University of Main (2002)

    Google Scholar 

  3. Cohn, A.G., Hazarika, S.M.: Qualitative Spatial Representation and Reasoning:an Overview. Fundamenta Informaticae 43, 2–32 (2001)

    MathSciNet  Google Scholar 

  4. Chon, H., Agrawal, D., Abbadi, A.E.: Query Processing for Moving Objects with Space-Time Grid Storage Model, Dept. of Computer Science, University of California, No: 2001-15 (2001a)

    Google Scholar 

  5. Chon, H.D., Agrawal, D.P., El Abbadi, A.: Storage and retrieval of moving objects. In: Tan, K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 173–184. Springer, Heidelberg (2000b)

    Chapter  Google Scholar 

  6. Chon, H., Agrawal, D., Abbadi, A.E.: Using Space-Time Grid for Efficient Management of Moving Objects. In: Proceeding of MobiDE (2001c)

    Google Scholar 

  7. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry-Algorithms and Application. Springer, Berlin (1997)

    Google Scholar 

  8. Erwig, M., Schneider, M.: The Honeycomb Model of Spatio-Temporal Partitions. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 39–59. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Ferscha, A., Hoertner, H., Kotsis, G.: Advances in Pervasive Computing. Austrian Computer Society (2004)

    Google Scholar 

  10. Forman, G.H., Zahorjan, J.: The Challenges of Mobile Computing. IEEE Computer 27(4), 38–47 (1994)

    Google Scholar 

  11. GAMMA (accessed: June 2006), http://www.cs.unc.edu/

  12. Garg, V.K., Mittal, N.: Computation Slicing: Techniques and Theory. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 29–78. Springer, Heidelberg (2001)

    Google Scholar 

  13. GIS-LOUNGE (accessed: June 2006), http://gislounge.com/ll/mobilegis.shtml

  14. Lewis, D.: Causation. Journal of Philosophy 70, pp. 556–567, 1973; Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 1(5), 90–98 (1986)

    Google Scholar 

  15. Kaufmann, W.J.: Relativity and Cosmology (1966)

    Google Scholar 

  16. Kuchar, J.K., Yang, L.C.: A Review of Conflict detection and Resolution Modeling Methods. IEEE Transactions On Intelligent Transportation Systems (December 2000)

    Google Scholar 

  17. Latombe, J.-C.: Robot Motion Planning. Kluwer academic Publishers, Dordrecht (1991)

    Google Scholar 

  18. Laurini., R.: An Introduction to TeleGeoMonitoring: Problems and Potentialities. In: Atkinson, P., Martin, D. (eds.) Innovations in GIS. Taylor & Francis, Abington (2000)

    Google Scholar 

  19. Li, L., Li, C., Lin, Z.: Investigation On the Concept Model Of Mobile GIS. In: Proceeding of Symposium on Geospatial theory, Processing and Applications, Ottawa (2002)

    Google Scholar 

  20. Malek, M.R.: Motion Modeling in GIS. In: Proceeding of GEOMATIC 1982, Tehran, Iran, National Cartographic Center (2003)

    Google Scholar 

  21. Malek, M.R.: A Logic-Based Framework for Qualitative Spatial Reasoning in Mobile GIS Environment. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 418–426. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Malek, M.R., Delavar, M.R., Aliabady, S.: A Mobile Computing Approach for Rescue. In: Proceeding of the 1st International Conference on Integrated Disaster Management, Tehran (January 2006) (in Persian)

    Google Scholar 

  23. Malek, M.R., Delavar, M.R., Frank, A.U.: A Logic-Based Foundation for Spatial Relationships in Mobile GIS Environment. In: Proceeding of 2nd Intenational symposium on LBS & Telecartography, Austria, Vienna (2006)

    Google Scholar 

  24. McClosky, M.: Naive theories of motion. In: Gentner, D., Stevens, S. (eds.) Mental Models. Hillsdale, New Jersey, Lawrence Erlbaum (1983)

    Google Scholar 

  25. Mittal, N.: Techniques for Analysing Distributed Computations. Department of Computer Science, Austin, USA. The university of Texas (2002)

    Google Scholar 

  26. Nivala, A.M., Sarjakoski, L.T.: Need for Context-Aware Topographic Maps in Mobile Devices. In: Virrantaus, K., Tveite, H. (eds.) ScanGIS 2003, Espoo, Finland (2003)

    Google Scholar 

  27. Pallottino, L., Feron, E., Bichini, A.: Mixed Integer Programming for Aircraft Conflict Resolution. Proceeding of Guidance, Navigation and Control Conference (2001)

    Google Scholar 

  28. Pallottino, L., Feron, E., Bichini, A.: Conflict Resolution Problems for Air Traffic Management systems Solved with Mixed integer Programming. IEEE Transactions On Intelligent Transportation Systems 3(1), 3–11 (2002)

    Article  Google Scholar 

  29. Richards, A., How, J., Schouwenaars, T., Feron, E.: Plume Avoidance Maneuver Planning Using Mixed Integer Linear Programming. In: Proceeding of AIAA 2001 (2001)

    Google Scholar 

  30. Richards, A., How, J.P.: Aircraft Trajectory Planning with Collision avoidance Using mixed Integer Linear Programming. In: Proceeding of American Control Conference 2002 (2002)

    Google Scholar 

  31. Sang, J.: Theory and Development of GPS Integrity Monitoring System, PhD Thesis, Queensland University of Technology (1996)

    Google Scholar 

  32. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceeding of ACM Symposium on Principles of Distributed Computing (1995)

    Google Scholar 

  33. Schouwenaars, T., Moor, B.D., Feron, E., How, J.: Mixed Integer Programming For Multi-Vehicle Path Planning. In: Proceeding of European Control Conference 2001 (2001)

    Google Scholar 

  34. Verma, T.S.: Causal Networks: Semantics and expressiveness. In: Sacher, R., Levitt, T.S., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, vol. 4. Elsevier Science, Amsterdam (1990)

    Google Scholar 

  35. Van den Bergen, G.: Collision Detection in Interactive 3D Computer Animation, Eindhoven, Eindhoven University of Technology (1999)

    Google Scholar 

  36. Wolf, H.: The Helmert block method, its origin and development. In: Proceeding of Second International Symposium on Problems Related to the Redefinition of North American Geodetic Networks, Arlington, pp. 319–326 (1978)

    Google Scholar 

  37. Wolfson, O., Jiang, L., et al.: Databases for Tracking Mobile Units in Real Time. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 169–186. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  38. Zaslavsky, A., Tari, Z.: Mobile Computing: Overview and Current Status. Australian Computer Journal 30 (1998)

    Google Scholar 

  39. Zhao, Y.: Vehicle Location and Navigation Systems, Boston, Artech House (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malek, M.R., Frank, A.U. (2006). A Mobile Computing Approach for Navigation Purposes. In: Carswell, J.D., Tezuka, T. (eds) Web and Wireless Geographical Information Systems. W2GIS 2006. Lecture Notes in Computer Science, vol 4295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11935148_12

Download citation

  • DOI: https://doi.org/10.1007/11935148_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49466-9

  • Online ISBN: 978-3-540-49467-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics