Skip to main content

Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

Abstract

We review recent work on scale-bridging modeling approaches applied to aqueous electrolytes and polyelectrolytes, connecting the local quantum chemical details to classical statistical and thermodynamics properties. We discuss solvation and pairing of ions in water, ways to include solvent degrees of freedom in effective ion–ion interactions, and coarse-grained simulations of polyelectrolytes including dielectric boundary effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results discussed here were produced with the version 3.9.2 of the CPMD code. CPMD, Copyright IBM Corp. 1990–2004, Copyright MPI für Festkörperforschung Stuttgart 1997–2001/http://www.cpmd.org.

References

  1. Lu G, Tadmor EB, Kaxiras E (2006) Phys Rev B 73:024108

    Article  CAS  Google Scholar 

  2. Rottler J, Barsky S, Robbins MO (2002) Phys Rev Lett 89:148304

    Article  CAS  Google Scholar 

  3. Csanyi G, Albaret T, Payne MC, Vita AD (2004) Phys Rev Lett 93:175503

    Article  CAS  Google Scholar 

  4. Delle Site L, Abrams CF, Alavi A, Kremer K (2002) Phys Rev Lett 89:156103

    Article  CAS  Google Scholar 

  5. Delle Site L, Leon S, Kremer K (2004) J Am Chem Soc 126:2944

    Article  CAS  Google Scholar 

  6. Schravendijk P, van der Vegt N, Delle Site L, Kremer K (2005) ChemPhysChem 6:1866

    Article  CAS  Google Scholar 

  7. Ghiringhelli LM, Hess B, van der Vegt NFA, Delle Site L (2008) J Am Chem Soc 130:13460

    Article  CAS  Google Scholar 

  8. Schravendijk P, Ghiringhelli LM, Delle Site L, van der Vegt NFA (2007) J Phys Chem C 111:2631

    Article  CAS  Google Scholar 

  9. Praprotnik M, Delle Site L, Kremer K (2005) J Chem Phys 123:224106

    Article  CAS  Google Scholar 

  10. Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M (2007) J Chem Theory Comput 3:1100

    Article  CAS  Google Scholar 

  11. Heyden A, Truhlar DG (2008) J Chem Theory Comput 4:217

    Article  CAS  Google Scholar 

  12. Frausto da Silva JJR, Williams RJP (1976) Nature 263:237

    Article  CAS  Google Scholar 

  13. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  14. Blaney DL, McCord TB (1995) J Geophys Res 100:14433

    Article  CAS  Google Scholar 

  15. Wersin P, Curti E, Appelo CAJ (2004) Appl Clay Sci 26:249

    Article  CAS  Google Scholar 

  16. Mickiewicz RA, Mayes AM, Knaack D (2002) J Biomed Mat Res 61:581

    Article  CAS  Google Scholar 

  17. Adams CS, Mansfield K, Perlot RL, Shapiro IM (2001) J Bio Chem 276:20316

    Article  CAS  Google Scholar 

  18. Südhof TC (2002) J Bio Chem 277:7629

    Article  CAS  Google Scholar 

  19. Suzuki K, Sorimachi H (1998) FEBS Lett 1–4:433

    Google Scholar 

  20. Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Science 301:347

    Article  CAS  Google Scholar 

  21. Kropman MF, Bakker HJ (2004) J Am Chem Soc 126:9135

    Article  CAS  Google Scholar 

  22. Lightstone FC, Schwegler E, Hood RQ, Gygi F, Galli G (2001) Chem Phys Lett 343:549

    Article  CAS  Google Scholar 

  23. Bakó I, Hutter J, Pálinkás G (2002) J Chem Phys 117:9838

    Article  CAS  Google Scholar 

  24. Lightstone FC, Schwegler E, Allesch M, Gygi F, Galli G (2005) Chem Phys Chem 6:1

    Article  CAS  Google Scholar 

  25. White JA, Schwegler E, Galli G (2000) J Chem Phys 113:4668

    Article  CAS  Google Scholar 

  26. Ikeda T, Boero M, Terakura K (2007) J Chem Phys 126:034501

    Article  CAS  Google Scholar 

  27. Jalilihvand F, Spångberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2001) J Am Chem Soc 123:431

    Article  CAS  Google Scholar 

  28. Varma S, Rempe SB (2006) Biophys Chem 124:192

    Article  CAS  Google Scholar 

  29. McLain S, Imberti S, Soper AK, Botti A, Bruni F, Ricci MA (2006) Phys Rev B 74:094201

    Article  CAS  Google Scholar 

  30. Krekeler C, Hess B, Delle Site L (2006) J Chem Phys 125:054305

    Article  CAS  Google Scholar 

  31. Krekeler C, Delle Site L (2007) J Phys Condens Matter 19:192101

    Article  CAS  Google Scholar 

  32. Naor MM, Van Nostrand K, Dellago C (2003) Chem Phys Lett 369:159

    Article  CAS  Google Scholar 

  33. Lyubartsev AP, Laasonen K, Laaksonen A (2001) J Chem Phys 114:3120

    Article  CAS  Google Scholar 

  34. Ramaniah LM, Bernasconi M, Parrinello M (1999) J Chem Phys 111:1587

    Article  CAS  Google Scholar 

  35. Asthagiri D, Pratt LR, Paulaitis ME, Rempe SB (2004) J Am Chem Soc 126:1285

    Article  CAS  Google Scholar 

  36. Silvestrelli PL, Parrinello M (1999) Phys Rev Lett 82:3308

    Article  CAS  Google Scholar 

  37. Silvestrelli PL, Parrinello M (1999) J Chem Phys 111:3572

    Article  CAS  Google Scholar 

  38. Marzari N, Vanderbilt D (1997) Phys Rev B 56:12847

    Article  CAS  Google Scholar 

  39. Souza I, Marzari N, Vanderbilt D (1997) Phys Rev B 65:035109

    Article  CAS  Google Scholar 

  40. Resta R (1998) Phys Rev Lett 80:1800

    Article  CAS  Google Scholar 

  41. Delle Site L, Alavi A, Lynden-Bell RM (1999) Mol Phys 96:1683

    Article  Google Scholar 

  42. Delle Site L (2001) Mol Sim 26:217

    Article  Google Scholar 

  43. Delle Site L (2001) Mol Sim 26:353

    Article  CAS  Google Scholar 

  44. Delle Site L, Lynden-Bell RM, Alavi A (2002) J Mol Liq 98:79

    Article  Google Scholar 

  45. Krekeler C, Delle Site L (2008) J Chem Phys 128:134515

    Article  CAS  Google Scholar 

  46. Scipioni R, Schmidt DA, Boero M (2009) J Chem Phys 130:024502

    Article  CAS  Google Scholar 

  47. Lambeth BP, Junghans C, Kremer K, Clementi C, Delle Site L (2010) J Chem Phys 133:221101

    Google Scholar 

  48. Kerisit S, Rosso KM (2009) J Chem Phys 131:114512

    Article  CAS  Google Scholar 

  49. Babiaczyk WI, Bonella S, Guidoni L, Ciccotti G (2010) J Phys Chem B 114:15018

    Article  CAS  Google Scholar 

  50. Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister series. Curr Opin Colloid Interface Sci 9:1–18

    Article  CAS  Google Scholar 

  51. Zhang YJ, Cremer PS (2006) Interactions between macromolecules and ions. Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  52. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  CAS  Google Scholar 

  53. Kunz W (2010) Specific ion effects. World Scientific, Singapore

    Google Scholar 

  54. Zhang YJ, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    Article  CAS  Google Scholar 

  55. Harmandaris VA, Adhikari NP, van der Vegt NFA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse grained simulations. Macromolecules 39:6708–6719

    Article  CAS  Google Scholar 

  56. van der Vegt NFA, Peter C, Kremer K (2008) Structure based coarse- and fine-graining in soft matter simulations. Chapter 25 in: Coarse graining of condensed phase and biomolecular systems. Voth GA (ed), Chapman and Hall/CRC Press, Taylor and Francis Group

    Google Scholar 

  57. Schwierz N, Horinek D, Netz RR (2010) Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26:7370–7379

    Article  CAS  Google Scholar 

  58. Holm C, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Polyelectrolyte theory. Adv Polym Sci 166:67–111

    CAS  Google Scholar 

  59. Lund M, Jungwirth P, Woodward CE (2008) Ion specific protein assembly and hydrophobic surface forces. Phys Rev Lett 100:258105

    Article  CAS  Google Scholar 

  60. Rasaiah JC, Friedman HL (1968) Integral equation methods in computation of equilibrium properties of ionic solutions. J Chem Phys 48:2742–2752

    Article  CAS  Google Scholar 

  61. Diamond RM (1963) Aqueous solution behavior of large univalent ions - a new type of ion pairing. J Phys Chem 67:2513–2517

    Article  CAS  Google Scholar 

  62. Hess B, van der Vegt NFA (2007) Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. J Chem Phys 127:234508

    Article  CAS  Google Scholar 

  63. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    Article  CAS  Google Scholar 

  64. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104

    Article  CAS  Google Scholar 

  65. Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B 113:6782–6791

    Article  CAS  Google Scholar 

  66. van Gunsteren WF, Bakowies D et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092

    Article  CAS  Google Scholar 

  67. Hess B, van der Vegt NFA (2006) Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B 110:17616–17626

    Article  CAS  Google Scholar 

  68. Hess B, Holm C, van der Vegt NFA (2006) Osmotic coefficients of NaCl(aq) force fields. J Chem Phys 124:164509

    Article  CAS  Google Scholar 

  69. Weerasinghe S, Smith PE (2003) A Kirkwood-Buff derived force field for sodium chloride in water. J Chem Phys 119:11342–11349

    Article  CAS  Google Scholar 

  70. Hess B, van der Vegt NFA (2009) Cation specific binding with protein surface charges. Proc Natl Acad Sci USA 106:13296–13300

    Article  CAS  Google Scholar 

  71. Fyta M, Kalcher I, Dzubiella J, Vrbka L, Netz RR (2010) Ionic force field optimization based on single-ion and ion-pair solvation properties. J Chem Phys 132:024911

    Article  CAS  Google Scholar 

  72. Klasczyk B, Knecht V (2010) Kirkwood-Buff derived force field for alkali chlorides in simple point charge water. J Chem Phys 132:024109

    Article  CAS  Google Scholar 

  73. Kalcher I, Dzubiella J (2009) Structure-thermodynamics relation of electrolyte solutions. J Chem Phys 130:134507

    Article  CAS  Google Scholar 

  74. Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308

    Article  CAS  Google Scholar 

  75. Hess B, Holm C, van der Vegt N (2006) Modeling multibody effects in ionic solutions with a concentration dependent dielectric constant. Phys Rev Lett 96:147801

    Article  CAS  Google Scholar 

  76. Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions 1. J Chem Phys 19:774–777

    Article  CAS  Google Scholar 

  77. Ben-Naim A (2006) Molecular theory of solutions. Oxford University Press, New York

    Google Scholar 

  78. Ganguly P, Schravendijk P, Hess B, van der Vegt NFA (2011) Ion pairing in aqueous electrolyte solutions with biologically relevant anions. J. Phys. Chem. B 115: 3734–3739

    Google Scholar 

  79. Voth GA (ed) (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press, Boca Raton

    Google Scholar 

  80. Mullinax JW, Noid WGJ (2009) Chem Phys 131:104110

    Google Scholar 

  81. Allen EC, Rutledge GCJ (2009) Chem Phys 130:034904

    Google Scholar 

  82. Mognetti BM, Virnau P, Yelash L, Paul W, Binder K, Mueller M, Mac-Dowell LGJ (2009) Chem Phys 130:044101

    CAS  Google Scholar 

  83. Murtola T, Karttunen M, Vattulainen IJ (2009) Chem Phys 131:055101

    Google Scholar 

  84. Villa A, Peter C, van der Vegt NFA (2010) Transferability of nonbonded interaction potentials for coarse grained simulations: benzene in water. J Chem Theory Comput 6:2434–2444

    Article  CAS  Google Scholar 

  85. Lyubartsev AP, Laaksonen A (1997) Osmotic and activity coefficients from effective potentials for hydrated ions. Phys Rev E 55:5689–5696

    Article  CAS  Google Scholar 

  86. Wei J, Li C, van der Vegt NFA, Peter C (2011) Transferability of coarse grained potentials: implicit solvent models for hydrated ions. J Chem Theory Comput, Doi:10.1021/ct2001396

  87. Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281

    Article  CAS  Google Scholar 

  88. Smith PE (1999) Computer simulation of cosolvent effects on hydrophobic hydration. J Phys Chem B 103:525–534

    Article  CAS  Google Scholar 

  89. Kalra A, Tugcu N, Cramer SM, Garde S (2001) Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B 105:6380–6386

    Article  CAS  Google Scholar 

  90. van der Vegt NFA, van Gunsteren WF (2004) Entropic contributions in cosolvent binding to hydrophobic solutes in water. J Phys Chem B 108:1056–1064

    Article  CAS  Google Scholar 

  91. van der Vegt NFA, Trzesniak D, Kasumaj B, van Gunsteren WF (2004) Energy-entropy compensation in the transfer of nonpolar solutes from water to cosolvent/water mixtures. ChemPhysChem 5:144–1477

    Article  Google Scholar 

  92. Godawat R, Jamadagni SN, Garde S (2009) Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc Natl Acad Sci USA 106:15119–15124

    Article  CAS  Google Scholar 

  93. Jamadagni SN, Godawat R, Garde S (2009) How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 25:13092–13099

    Article  CAS  Google Scholar 

  94. Villa A, Peter C, van der Vegt NFA (2009) Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation. Phys Chem Chem Phys 11:2077–2086

    Article  CAS  Google Scholar 

  95. Lee ME, van der Vegt NFA (2006) Does urea denature hydrophobic interactions? J Am Chem Soc 128:4948–4949

    Article  CAS  Google Scholar 

  96. Wu JZ, Prausnitz JM (2008) Pairwise hydrophobic effect for alkanes in water. Proc Natl Acad Sci USA 105:9512–9515

    Article  CAS  Google Scholar 

  97. Harmandaris VA, Reith D, van der Vegt NFA, Kremer K (2007) Comparison between coarse-graining models for polymer systems: two mapping schemes for polystyrene. Macromol Chem Phys 208:2109–2120

    Article  CAS  Google Scholar 

  98. Fritz D, Harmandaris VA, Kremer K, van der Vegt NFA (2009) Coarse-grained polymer melts based on isolated atomistic chains: simulation of polystyrene of different tacticities. Macromolecules 42:7579–7588

    Article  CAS  Google Scholar 

  99. Fritz D, Herbers CR, Kremer K, van der Vegt NFA (2009) Hierarchical modeling of polymer permeation. Soft Matter 5:4556–4563

    Article  CAS  Google Scholar 

  100. Leon S, van der Vegt N, Delle Site L, Kremer K (2005) Bisphenol-A-polycarbonate: entanglement analysis from coarse-grained MD simulations. Macromolecules 38:8078–8092

    Article  CAS  Google Scholar 

  101. Hess B, Leon S, van der Vegt NFA, Kremer K (2006) Long time polymer trajectories from coarse grained simulations: bisphenol-A-polycarbonate. Soft Matter 2:409–414

    Article  CAS  Google Scholar 

  102. Harmandaris VA, Kremer K (2009) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802

    Article  CAS  Google Scholar 

  103. Marcon V, Fritz D, van der Vegt NFA (2011) Hierarchical modelling of polystyrene surfaces (in preparation)

    Google Scholar 

  104. Reith D, Putz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  CAS  Google Scholar 

  105. Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5:3211–3223

    Article  CAS  Google Scholar 

  106. Fritz D (2009) Coarse-graining methods and polymer dynamics. PhD Thesis, University of Mainz

    Google Scholar 

  107. Carbone P, Karimi-Varzaneh HA, Chem X, Müller-Plathe F (2008) Transferability of coarse-grained force fields: the polymer case. J Chem Phys 128:064904

    Article  CAS  Google Scholar 

  108. Villa A, van der Vegt NFA, Peter C (2009) Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model. Phys Chem Chem Phys 11:2068–2076

    Article  CAS  Google Scholar 

  109. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-Grained MARTINI force field. PLoS Comput Biol 6:e1000810

    Article  CAS  Google Scholar 

  110. Wu Z, Cui Q, Yethiraj A (2010) Coarse-grained model for water: the importance of electrostatic interactions. J Phys Chem B 114:10524–10529

    Article  CAS  Google Scholar 

  111. Woodward CE, Jönsson B (1991) Chem Phys 155:207–219

    Article  CAS  Google Scholar 

  112. Stevens MJ, Kremer K (1993) Macromolecules 26:4717

    Article  CAS  Google Scholar 

  113. Stevens MJ, Kremer K (1993) Phys Rev Lett 71:2228

    Article  CAS  Google Scholar 

  114. Stevens MJ, Kremer K (1995) J Chem Phys 103(4):1669–1690

    Article  CAS  Google Scholar 

  115. Kremer K, Grest GS (1990) J Chem Phys 92:5057–5086

    Article  CAS  Google Scholar 

  116. Limbach HJ (2001) Ph.D. thesis. Johannes Gutenberg–Universität Mainz. http://archimed.uni-mainz.de/pub/2002/0121/

  117. Dünweg B, Stevens MJ, Kremer K (1995) In: Binder K (ed) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, New York

    Google Scholar 

  118. Holm C, Rehahn M, Oppermann W, Ballauff M (2004) Adv Polym Sci 166:1–27

    CAS  Google Scholar 

  119. Dobrynin AV (2008) Curr Opin Colloid Interface Sci 13:376–388

    Article  CAS  Google Scholar 

  120. Micka U, Holm C, Kremer K (1999) Langmuir 15:4033

    Article  CAS  Google Scholar 

  121. Limbach HJ, Holm C, Kremer K (2002) Europhys Lett 60:566–572

    Article  CAS  Google Scholar 

  122. Mann BAF, Everaers R, Holm C, Kremer K (2004) Europhys Lett 67:786–792

    Article  CAS  Google Scholar 

  123. Mann BAF, Holm C, Kremer K (2005) J Chem Phys 122:154903

    Article  CAS  Google Scholar 

  124. Dobrynin AV, Rubinstein M, Obukhov SP (1996) Macromolecules 29:2974

    Article  CAS  Google Scholar 

  125. Limbach HJ, Holm C (2002) Comput Phys Commun 147:321–324

    Article  Google Scholar 

  126. Limbach HJ, Holm C (2003) J Phys Chem B 107:8041–8055

    Article  CAS  Google Scholar 

  127. Liao Q, Dobrynin AV, Rubinstein M (2003) Macromolecules 36:3399–3410

    Article  CAS  Google Scholar 

  128. Liao Q, Dobrynin AV, Rubinstein M (2003) Macromolecules 36:3386–3398

    Article  CAS  Google Scholar 

  129. Liao Q, Dobrynin AV, Rubinstein M (2006) Macromolecules 39:1920–1938

    Article  CAS  Google Scholar 

  130. Deserno M, Holm C (2001) Cell-model and Poisson-Boltzmann-theory: a brief introduction. In: Holm C, Kékicheff P, Podgornik R (eds) Electrostatic effects in soft matter and biophysics, volume 46 of NATO science series II – mathematics, physics and chemistry. Kluwer, Dordrecht

    Google Scholar 

  131. Blaul J, Wittemann M, Ballauff M, Rehahn M (2000) J Phys Chem B 104:7077–7081

    Article  CAS  Google Scholar 

  132. Deserno M, Holm C, Blaul J, Ballauff M, Rehahn M (2001) Eur Phys J E 5:97–103

    Article  CAS  Google Scholar 

  133. Antypov D, Holm C (2006) Phys Rev Lett 96:088302

    Article  CAS  Google Scholar 

  134. Antypov D, Holm C (2007) Macromolecules 40:731–738

    Article  CAS  Google Scholar 

  135. Arnold A, Holm C (2005) J Chem Phys 123:144103

    Article  CAS  Google Scholar 

  136. Deserno M, Holm C (2002) Mol Phys 100:2941–2956

    Article  CAS  Google Scholar 

  137. Dünweg B, Ladd AJC (2009) Adv Poly Sci 221:89–166

    Google Scholar 

  138. Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Adv Poly Sci 221:1–87

    CAS  Google Scholar 

  139. Slater GW, Holm C, Chubynsky MV, de Haan HW, Dubé A, Grass K, Hickey OA, Kingsburry C, Sean D, Shendruk TN, Zhan L (2009) Electrophoresis 30:792–818

    Article  CAS  Google Scholar 

  140. Grass K, Böhme U, Scheler U, Cottet H, Holm C (2008) Phys Rev Lett 100:096104

    Article  CAS  Google Scholar 

  141. Frank S, Winkler RG (2008) Europhys Lett 83:38004

    Article  CAS  Google Scholar 

  142. Grass K, Holm C (2010) Faraday Discuss 144:5770

    Article  CAS  Google Scholar 

  143. Smiatek J, Schmid F (2010) J Phys Chem B 114:6266

    Article  CAS  Google Scholar 

  144. Netz RR (2003) Phys Rev Lett 90:128104

    Article  CAS  Google Scholar 

  145. Hsiao P-Y, Luijten E (2006) Phys Rev Lett 97:148301

    Article  CAS  Google Scholar 

  146. Liu H, Zhu Y, Maginn E (2010) Macromolecules 43:48054813

    Google Scholar 

  147. Schmitt J, Decher G, Hong G (1992) Thin Solid Films 210/211:831

    Article  Google Scholar 

  148. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  149. Netz RR, Joanny JF (1999) Macromolecules 32:9013

    Article  CAS  Google Scholar 

  150. Park SY, Rubner MF, Mayes AM (2002) Langmuir 18:9600–9604

    Article  CAS  Google Scholar 

  151. Castelnovo M, Joanny JF (2000) Langmuir 16:7524–7532

    Article  CAS  Google Scholar 

  152. Shafir A, Andelman D (2006) Eur Phys J E 19:155–162

    Article  CAS  Google Scholar 

  153. Wang Q (2006) J Phys Chem B 110:5825–5828

    Article  CAS  Google Scholar 

  154. Hoda N, Larson RG (2009) J Phys Chem B 113:4232–4241

    Article  CAS  Google Scholar 

  155. Wang Q (2009) Soft Matter 5:413–424

    Article  CAS  Google Scholar 

  156. Zhao W, Zheng B, Haynie DT (2006) Langmuir 22:6668–6675

    Article  CAS  Google Scholar 

  157. Reddy G, Chang R, Yethiraj A (2006) J Chem Theory Comput 2:630–636

    Article  CAS  Google Scholar 

  158. Chialvo AA, Simonson JM (2008) J Phys Chem C 112:19521–19529

    Article  CAS  Google Scholar 

  159. Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud SQ, Garrido JA, Scheibel T, Hugel T, Netz RR (2008) Proc Natl Acad Sci 105:2842–2847

    Article  CAS  Google Scholar 

  160. Qiao B, Cerdá JJ, Holm C (2010) Macromolecules 43:7828–7838

    Article  CAS  Google Scholar 

  161. Qiao B, Cerdá JJ, Holm C (2011) Macromolecules 44:1707–1718

    Google Scholar 

  162. Messina R, Holm C, Kremer K (2003) Langmuir 19:4473–4482

    Article  CAS  Google Scholar 

  163. Messina R (2003) J Chem Phys 119:8133–8139

    Article  CAS  Google Scholar 

  164. Messina R (2004) Macromolecules 37:621–629

    Article  CAS  Google Scholar 

  165. Messina R, Holm C, Kremer K (2004) J Polym Sci B Polym Phys 42:3557

    Article  CAS  Google Scholar 

  166. Panchagnula V, Jeon J, Dobrynin AV (2004) Phys Rev Lett 93:037801

    Article  CAS  Google Scholar 

  167. Messina R (2004) Phys Rev E 70:051802

    Article  CAS  Google Scholar 

  168. Patel PA, Jeon J, Mather PT, Dobrynin AV (2005) Langmuir 21:6113–6122

    Article  CAS  Google Scholar 

  169. Panchagnula V, Jeon J, Rusling JF, Dobrynin AV (2005) Langmuir 21:1118–1125

    Article  CAS  Google Scholar 

  170. Jeon J, Panchagnula V, Pan J, Dobrynin AV (2006) Langmuir 22:4629–4637

    Article  CAS  Google Scholar 

  171. Guyomard A, Muller G, Glinel K (2005) Macromolecules 38:5737–5742

    Article  CAS  Google Scholar 

  172. Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC (2002) Langmuir 18:5607–5612

    Article  CAS  Google Scholar 

  173. Gopinadhan M, Ahrens H, Gunther JU, Steitz R, Helm CA (2005) Macromolecules 38:5228–5235

    Article  CAS  Google Scholar 

  174. Liu G, Zhao J, Sun Q, Zhang G (2008) J Phys Chem B 112:3333–3338

    Article  CAS  Google Scholar 

  175. Riegler H, Essler F (2002) Langmuir 18:6694–6698

    Article  CAS  Google Scholar 

  176. Tanchak OM, Yager KG, Fritzsche H, Harroun T, Katsaras J, Barrett CJ (2008) J Chem Phys 129:084901

    Article  CAS  Google Scholar 

  177. Kolasinska M, Warszynski P (2005) Bioelectrochemistry 66:65–70

    Article  CAS  Google Scholar 

  178. Buron CC, Filiatre C, Membrey F, Bainier C, Charraut D, Foissy A (2007) Colloids Surf A 305:105–111

    Article  CAS  Google Scholar 

  179. Steitz R, Jaeger W, von Klitzing R (2001) Langmuir 17:4471–4474

    Article  CAS  Google Scholar 

  180. Schoeler B, Kumaraswamy G, Caruso F (2002) Macromolecules 35:889–897

    Article  CAS  Google Scholar 

  181. Glinel K, Moussa A, Jonas AM, Laschewsky A (2002) Langmuir 18:1408–1412

    Article  CAS  Google Scholar 

  182. Salomäki M, Kankare J (2008) Macromolecules 41:4423–4428

    Article  CAS  Google Scholar 

  183. El Haitami AE, Martel D, Ball V, Nguyen HC, Gonthier E, Labbe P, Voegel JC, Schaaf P, Senger B, Boulmedais F (2009) Langmuir 25:2282–2289

    Article  CAS  Google Scholar 

  184. Muller M, Meier-Haack J, Schwarz S, Buchhammer HM, Eichhorn EJ, Janke A, Kessler B, Nagel J, Oelmann M, Reihs T, Lunkwitz K (2004) J Adhes 80:521–547

    Article  CAS  Google Scholar 

  185. Gopinadhan M, Ivanova O, Ahrens H, Günther JU, Steitz R, Helm CA (2007) J Phys Chem B 111:8426–8434

    Article  CAS  Google Scholar 

  186. Cerdá JJ, Qiao B, Holm C (2009) Soft Matter 5:4412–4425

    Article  CAS  Google Scholar 

  187. Cerdá JJ, Qiao B, Holm C (2009) Eur Phys J Spec Top 177:129–148

    Article  Google Scholar 

  188. Carrillo JMY, Dobrynin AV (2007) Langmuir 23:2472–2482

    Article  CAS  Google Scholar 

  189. Patel PA, Jeon J, Mather PT, Dobrynin AV (2006) Langmuir 22:9994–10002

    Article  CAS  Google Scholar 

  190. Kulcsar A, Voegel JC, Schaaf P, Kekicheff P (2005) Langmuir 21:1166–1170

    Article  CAS  Google Scholar 

  191. Gavryushov S, Linse P (2006) J Phys Chem B 110:10878–10887

    Article  CAS  Google Scholar 

  192. Neff PA, Wunderlich BK, von Klitzing R, Bausch AR (2007) Langmuir 23:4048–4052

    Article  CAS  Google Scholar 

  193. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, von Klitzing R, Steitz R (2007) Colloids Surf A 303:14–29

    Article  CAS  Google Scholar 

  194. Wende C, Schönhof M (2010) Langmuir 26:8352–8357

    Article  CAS  Google Scholar 

  195. Kusalik PG, Mandy ME, Svishchev IM (1994) J Chem Phys 100:7654–7664

    Article  CAS  Google Scholar 

  196. Mahoney MW, Jorgensen WL (2000) J Chem Phys 112:8910–8922

    Article  CAS  Google Scholar 

  197. Tyagi S, Arnold A, Holm C (2007) J Chem Phys 127:154723

    Article  CAS  Google Scholar 

  198. Tyagi S, Arnold A, Holm C (2008) J Chem Phys 129:204102

    Article  CAS  Google Scholar 

  199. Tyagi S, Süzen M, Sega M, Barbosa M, Kantorovich SS, Holm C (2010) J Chem Phys 132:154112

    Article  CAS  Google Scholar 

  200. Sagui C, Darden T (2001) J Chem Phys 114:6578

    Article  CAS  Google Scholar 

  201. Banerjee S, Board JA Jr (2005) J Comput Chem 26:957–967

    Article  CAS  Google Scholar 

  202. Maggs AC (2002) J Chem Phys 117:1975

    Article  CAS  Google Scholar 

  203. Pasichnyk I, Dünweg B (2004) J Phys Condens Matter 16:3999–4020

    Article  CAS  Google Scholar 

  204. Rottler J (2007) J Chem Phys 127:134104–134109

    Article  CAS  Google Scholar 

  205. Meller LNA, Branton D (2001) Phys Rev Lett 86:3435

    Article  CAS  Google Scholar 

  206. Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Nat Phys 2:473–477

    Article  CAS  Google Scholar 

  207. Howorka S, Siwy Z (2009) Chem Soc Rev 38:2360–2384

    Article  CAS  Google Scholar 

  208. van Dorp S, Keyser UF, Dekker NH, Dekker C, Lemay SG (2009) Nat Phys 5:347–351

    Article  CAS  Google Scholar 

  209. Muthukumar M (1999) J Chem Phys 111:10371

    Article  CAS  Google Scholar 

  210. Milchev A, Binder K, Bhattacharya A (2004) J Chem Phys 121:6042–6051

    Article  CAS  Google Scholar 

  211. Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton JP (2006) Nanotechnology 17:622–633

    Article  CAS  Google Scholar 

  212. Forrey C, Muthukumar M (2007) J Chem Phys 127:015102

    Article  CAS  Google Scholar 

  213. Luan B, Aksimentiev A (2008) Phys Rev E 78:21912

    Article  CAS  Google Scholar 

  214. Melchionna S, Bernaschi M, Fyta M, Kaxiras E, Succi S (2009) Phys Rev E 79:30901

    Article  CAS  Google Scholar 

  215. Kesselheim S, Sega M, Holm C (2011) Comput Phys Commun 182:33–35

    Article  CAS  Google Scholar 

  216. Fixman M, Skolnick J (1978) Macromolecules 11:863

    Article  CAS  Google Scholar 

  217. Poma AB, Delle Site L (2010) Phys Rev Lett 104:250201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful collaborations with Dmytro Antypov, Juan J. Cerda, Dominik Fritz, Berk Hess, Stefan Kesselheim, Vagelis Harmandaris, Kurt Kremer, Hanjo Limbach, Christine Peter, Baofu Qiao, Marcello Sega, Sandeep Tyagi, and Alessandra Villa. Funding from a Volkswagen grant, the SFB 625 TP:C5, DFG grant Ho/1108-17, and DFG Clusters of Excellence 259 and 581 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luigi Delle Site , Christian Holm or Nico F. A. van der Vegt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Site, L.D., Holm, C., van der Vegt, N.F.A. (2011). Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_168

Download citation

Publish with us

Policies and ethics