Skip to main content

Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles

  • Chapter
  • First Online:
Polymer Characterization

Part of the book series: Advances in Polymer Science ((POLYMER,volume 230))

Abstract

In this review, we report recent developments on the shear-induced transitions and instabilities found in surfactant wormlike micelles. The survey focuses on the nonlinear shear rheology and covers a broad range of surfactant concentrations, from the dilute to the liquid-crystalline states and including the semidilute and concentrated regimes. Based on a systematic analysis of many surfactant systems, the present approach aims to identify the essential features of the transitions. It is suggested that these features define classes of behaviors. The review describes three types of transitions and/or instabilities: the shear-thickening found in the dilute regime, the shear-banding which is linked in some systems to the isotropic-to-nematic transition, and the flow-aligning and tumbling instabilities characteristic of nematic structures. In these three classes of behaviors, the shear-induced transitions are the result of a coupling between the internal structure of the fluid and the flow, resulting in a new mesoscopic organization under shear. This survey finally highlights the potential use of wormlike micelles as model systems for complex fluids and for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al(NO3)3 :

Aluminum nitrate

AlCl3 :

Aluminum chloride

CP/Sal:

Cetylpyridinium salicylate

CPCl:

Cetylpyridinium chloride

CPClO3 :

Cetylpyridinium chlorate

C8F17 :

Perfluorooctyl butane trimethylammonium bromide

C12E5 :

Penta(ethylene glycol) monododecyl ether

C12TAB:

Dodecyltrimethylammonium bromide

C14TAB:

Tetradecyltrimethylammonium bromide

C14DMAO:

Tetradecyldimethylamine oxide

C16TAB:

Hexadecyltrimethylammonium bromide

C16TAC:

Hexadecyltrimethylammonium chloride

C18TAB:

Octadecyltrimethylammonium bromide

C18-C8DAB:

Hexadecyloctyldimethylammonium bromide

CnTAB:

Alkyltrimethylammonium bromide

CTAHNC:

Cetyltrimethylammonium 3-hydroxy-2-naphthalenecarboxylate

CTAT:

Hexadecyltrimethylammonium p-toluenesulfonate

CTAVB:

Cetyltrimethylammonium benzoate

Dec:

Decanol

DJS:

Diffusive Johnson-Segalman

DLS:

Dynamic light scattering

DR:

Drag reduction

EHAC:

Erucyl bis(hydroxyethyl)methylammoniumchloride

FB:

Flow birefringence

FI:

Faraday instability

Gemini 12-2-12:

Ethane diyl-1,2-bis-(dodecyl dimethylammonium bromide)

Hex:

Hexanol

HPC:

Hydroxypropyl cellulose

I/N:

Isotropic-to-nematic

KBr:

Potassium bromide

LAPB:

Laurylamidopropyl betaine

LSI:

Light scattering imaging

LCP:

Liquid crystalline polymer

NaCl:

Sodium chloride

NaClBz:

Sodium chlorobenzoate

NaClO3 :

Sodium chlorate

NaNO3 :

Sodium nitrate

NaSal:

Sodium salicylate

NaTos:

Sodium p-toluenesulfonate or sodium tosylate

NH4Cl:

Ammonium chloride

NMR:

Nuclear magnetic resonance

PBLG:

Poly(benzyl-L-glutamate)

PEO:

Poly(ethylene oxide)

PIV:

Particle image velocimetry

PTV:

Particle tracking velocimetry

SANS:

Small-angle neutron scattering

SALS:

Small-angle light scattering

SAXS:

Small-angle X-ray scattering

SDBS:

Sodium dodecyl benzyl sulfonate

SDES:

Sodium dodecyl trioxyethylene sulfate

SdS:

Sodium decylsulfate

SDS:

Sodium dodecyl sulfate

SIP:

Shear-induced phase

SIS:

Shear-induced structure

TTAA:

Tris(2-hydroxyethyl)-tallowalkyl ammonium acetate

USV:

Ultrasonic velocimetry

References

  1. Debye P, Anacker E (1951) Micelle shape from dissymetry measurements. J Phys Chem 55:644–655

    CAS  Google Scholar 

  2. Nash T (1958) The interaction of some naphtalene derivatives with a cationic soap below the critical micelle concentration. J Colloid Sci 13:134–139

    CAS  Google Scholar 

  3. Gravsholt S (1976) Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents. J Colloid Interface Sci 57:575–577

    CAS  Google Scholar 

  4. Porte G, Appell J, Poggi Y (1980) Experimental investigations on the flexibility of elongated cetylpyridinium bromide micelles. J Phys Chem 84:3105–3110

    CAS  Google Scholar 

  5. Porte G, Appell J (1981) Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions. J Phys Chem 85:2511–2519

    CAS  Google Scholar 

  6. Ikeda S (1984) Sphere-rod transition of surfactant micelles and size distribution of rodlike micelles. J Phys Chem 88:2144–2149

    CAS  Google Scholar 

  7. Candau S, Hirsch E, Zana R (1985) Light scattering investigations of the behavior of semidilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semidilute polymer solutions. J Colloid Interface Sci 105:521–528

    CAS  Google Scholar 

  8. Imae T, Kamiya R, Ikeda S (1984) Electron microscopic observation of rodlike micelles of dimethyloleylamine oxide regenerated from its aqueous solutions. J Colloid Interface Sci 99(1):300–301

    CAS  Google Scholar 

  9. Imae T, Kamiya R, Ikeda S (1985) Formation of spherical and rodlike micelles of cetyltrimethylammonium bromide in aqueous nabr solutions. J Colloid Interface Sci 108(1):215–225

    CAS  Google Scholar 

  10. Imae T, Ikeda S (1986) Sphere-rod transition in micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles. J Phys Chem 90(1):5216–5223

    CAS  Google Scholar 

  11. Porte G, Poggi Y, Appell J, Maret G (1984) Large micelles in concentrated solutions. The second critical micellar concentration. J Phys Chem 88:5713–5720

    CAS  Google Scholar 

  12. Porte G, Gomati R, Elhaitamy O, Appell J, Marignan J (1986) Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary-systems (surfactant alcohol brine). J Phys Chem 90(22):5746–5751

    CAS  Google Scholar 

  13. Candau S, Hirsch E, Zana R (1984) New aspects of the behaviour of alkyltrimethylammonium bromide micelles: light scattering and viscometric studies. J Phys 45:1263–1270

    CAS  Google Scholar 

  14. Candau S, Hirsch E, Zana R, Adam M (1988) Network properties of semidilute kbr solutions of cetyltrimetylammonium bromide. J Colloid Interface Sci 122:430–440

    CAS  Google Scholar 

  15. Amaral L, Helene M, Bittencourt D, Itri R (1987) New nematic lyomesophase of sodium dodecyl sulfate. J Phys Chem 91:5949–5953

    CAS  Google Scholar 

  16. Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine. J Phys Chem 91:6203–6210

    CAS  Google Scholar 

  17. Amaral L, Helene MM (1988) Nematic domain in the sodium lauryl sulfate/water/decanol system. J Phys Chem 92:6094–6098

    CAS  Google Scholar 

  18. Hertel G, Hoffmann H (1988) Lyotropic nematic phases of double chain surfactants. Trends Colloid Interface Sci 4:123–131

    Google Scholar 

  19. Hoffmann H, Löbl H, Rehage H, Wunderlich I (1985) Rheology of surfactant solutions. Tenside Detergents 22:290–298

    CAS  Google Scholar 

  20. Shikata T, Hirata K, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media. 1. viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3:1081–1086

    CAS  Google Scholar 

  21. Rehage H, Hoffmann H (1988a) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719

    CAS  Google Scholar 

  22. Shikata T, Hirata K, Kotaka T (1988b) Micelle formation of detergent molecules in aqueous media. 2. role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359

    CAS  Google Scholar 

  23. Shikata T, Hirata H, Takatori E, Osaki K (1988a) Nonlinear viscoelastic behavior of aqueous detergent solutions. J Non-Newt Fluid Mech 28(2):171–182

    CAS  Google Scholar 

  24. Shikata T, Hirata K, Kotaka T (1989) Micelle formation of detergent molecules in aqueous media. 3. viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 5:398–405

    CAS  Google Scholar 

  25. Cates ME, Candau SJ (1990) Statics and dynamics of wormlike surfactant micelles. J Phys Cond Matt 2(33):6869–6892

    CAS  Google Scholar 

  26. Shikata T, Hirata K, Kotaka T (1990) Micelle formation of detergent molecules in aqueous media. 4. electrostatic features and phase behavior of cetyltrimethylammonium bromide:salicylic acid micellar solutions. J Phys Chem 94:3702–3706

    CAS  Google Scholar 

  27. Kern F, Zana R, Candau SJ (1991) Rheological properties of semidilute and concentrated aqueous-solutions of cetyltrimethylammonium chloride in the presence of sodium-salicylate and sodium-chloride. Langmuir 7(7):1344–1351

    CAS  Google Scholar 

  28. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions – model systems for rheological research. Mol Phys 74(5):933–973

    CAS  Google Scholar 

  29. Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions – microscopy and rheology. J Phys Chem 96(1):474–484

    CAS  Google Scholar 

  30. Khatory A, Lequeux F, Kern F, Candau SJ (1993b) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high-salt content. Langmuir 9(6):1456–1464

    CAS  Google Scholar 

  31. Khatory A, Kern F, Lequeux F, Appell J, Porte G, Morie N, Ott A, Urbach W (1993a) Entangled versus multiconnected network of wormlike micelles. Langmuir 9(4):933–939

    CAS  Google Scholar 

  32. Berret JF, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9(11):2851–2854

    CAS  Google Scholar 

  33. Berret JF, Roux DC, Porte G (1994a) Isotropic-to-nematic transition in wormlike micelles under shear. J Phys II (France) 4(8):1261–1279

    CAS  Google Scholar 

  34. Smolka LB, Belmonte A (2003) Drop pinch-off and filament dynamics of wormlike micellar fluids. J Non-Newt Fluid Mech 115(1):1–25

    CAS  Google Scholar 

  35. Bellour M, Skouri M, Munch JP, Hébraud P (2002) Brownian motion of particles embedded in a solution of giant micelles. Eur Phys J E 8:431–436

    CAS  Google Scholar 

  36. Buchanan M, Atakhorrami M, Palierne JF, MacKintosh FC, Schmidt CF (2005) High-frequency microrheology of wormlike micelles. Phys Rev E 72(1):011,504

    Google Scholar 

  37. Willenbacher N, Oelschlaeger C, Schopferer M, Fischer P, Cardinaux F, Scheffold F (2007) Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys Rev Lett 99(6):068,302

    Google Scholar 

  38. Cappallo N, Lapointe C, Reich DH, Leheny RL (2007) Nonlinear microrheology of wormlike micelle solutions using ferromagnetic nanowire probes. Phys Rev E 76(3)

    Google Scholar 

  39. Raudsepp A, Callaghan P, Hemar Y (2008) A study of the nonlinear rheology of complex fluids using diffusing wave spectroscopy. J Rheol 52(5):1113–1129

    CAS  Google Scholar 

  40. Cates ME (1988) Dynamics of living polymers and flexible surfactant micelles – scaling laws for dilution. J Phys 49(9):1593–1600

    Google Scholar 

  41. Doi M, Edwards S (1986) The theory of polymer dynamics. Oxford, Clarendon

    Google Scholar 

  42. Lequeux F, Candau S (1994) Dynamical properties of wormlike micelles. In: Herb C, Prud’homme R (eds) Structure and flow in surfactant solutions. ACS Symposium Series 578. American Chemical Society, Washington, DC, pp 51–62

    Google Scholar 

  43. Walker LM (2001) Rheology and structure of wormlike micelles. Curr Opin Colloid Inter Sci 6(5–6):451–456

    CAS  Google Scholar 

  44. Berret JF (2005) Rheology of wormlike micelles: equilibrium properties and shear-banding transition. In: Molecular gels, Elsevier, Dordrecht

    Google Scholar 

  45. Prudhomme RK, Warr GG (1994) Elongational flow of solutions of rodlike micelles. Langmuir 10(10):3419–3426

    CAS  Google Scholar 

  46. Walker LM, Moldenaers P, Berret JF (1996) Macroscopic response of wormlike micelles to elongational flow. Langmuir 12(26):6309–6314

    CAS  Google Scholar 

  47. Chen CM, Warr GG (1997) Light scattering from wormlike micelles in an elongational field. Langmuir 13(6):1374–1376

    CAS  Google Scholar 

  48. Rothstein JP (2003) Transient extensional rheology of wormlike micelle solutions. J Rheol 47(5):1227–1247

    CAS  Google Scholar 

  49. Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newt Fluid Mech 133(2–3):73–90

    CAS  Google Scholar 

  50. Andereck D, Liu S, Swinney H (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183

    Google Scholar 

  51. Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent solutions. Rheol Acta 21:561–563

    Google Scholar 

  52. Hoffmann H, Platz G, Rehage H, Schorr W, Ulbricht W (1981b) Viskoelastische tensidlsungen. Ber Bunsenges Phys Chem 85:255–266

    CAS  Google Scholar 

  53. Shenoy A (1984) A review on drag reduction with special reference to micellar systems. Colloid Polym Sci 262:319–337

    CAS  Google Scholar 

  54. Bewersdorff HW, Frings B, Lindner P, Oberthür RC (1986) The conformation of drag reducing micelles from small-angle-neutron-scattering experiments. Rheol Acta 25(6):642–646

    CAS  Google Scholar 

  55. Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour. Rheol Acta 25(5):468–486

    CAS  Google Scholar 

  56. Lindner P, Bewersdorff H, Heen R, Sittart P, Thiel H, Langowski J, Oberthür R (1990) Drag-reducing surfactant solutions in laminar and turbulent flow investigated by small-angle neutron scattering and light scattering. Trends Colloid Interface Sci 4:107–112

    Google Scholar 

  57. Boltenhagen P, Hu YT, Matthys EF, Pine DJ (1997b) Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys Rev Lett 79(12):2359–2362

    CAS  Google Scholar 

  58. Sung K, Han MS, Kim C (2003) Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions. Korea-Australia Rheol J 15(3):151–156

    Google Scholar 

  59. Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26(6):532–542

    CAS  Google Scholar 

  60. Koch S, Schneider T, Küter W (1998) The velocity field of dilute cationic surfactant solutions in a couette-viscometer. J Non-Newtonian Fluid Mech 78(1):47–59

    CAS  Google Scholar 

  61. Dehmoune J, Decruppe J, Greffier O, Xu H (2007) Rheometric and rheo-optical investigation on the effect of the aliphatic chain length of the surfactant on the shear thickening of dilute wormlike micellar solutions. Rheol Acta 46(8):1121–1129

    CAS  Google Scholar 

  62. Wunderlich A, Brunn P (1989) The complex rheological behavior of an aqueous cationic surfactant solution investigated in a couette-type viscosimeter. Colloid Polym Sci 267:627–636

    CAS  Google Scholar 

  63. Hu YT, Wang SQ, Jamieson AM (1993b) Rheological and flow birefringence studies of a shear-thickening complex fluid – a surfactant model system. J Rheol 37(3):531–546

    CAS  Google Scholar 

  64. Liu CH, Pine DJ (1996) Shear-induced gelation and fracture in micellar solutions. Phys Rev Lett 77(10):2121–2124

    CAS  Google Scholar 

  65. Vasudevan M, Shen A, Khomami B, Sureshkumar R (2008) Self-similar shear thickening behavior in ctab/nasal surfactant solutions. J Rheol 52(2):527–550

    CAS  Google Scholar 

  66. Cressely R, Hartmann V (1998) Rheological behaviour and shear thickening exhibited by aqueous ctab micellar solutions. Eur Phys J B 6(1):57–62

    CAS  Google Scholar 

  67. Hartmann V, Cressely R (1998) Occurrence of shear thickening in aqueous micellar solutions of CTAB with some added organic counterions. Colloid Polym Sci 276(2):169–175

    CAS  Google Scholar 

  68. Hartmann V, Cressely R (1997b) Simple salts effects on the characteristics of the shear thickening exhibited by an aqueous micellar solution of CTAT/NaSal. Europhys Lett 40:691–696

    CAS  Google Scholar 

  69. Rose GD, Foster KL (1989) Drag reduction and rheological properties of cationic viscoelastic surfactant formulations. J Non-Newt Fluid Mech 31(1):59–85

    CAS  Google Scholar 

  70. Hu Y, Rajaram CV, Wang SQ, Jamieson AM (1994) Shear thickening behavior of a rheopectic micellar solution – salt effects. Langmuir 10(1):80–85

    CAS  Google Scholar 

  71. Hartmann V, Cressely R (1997a) Shear-thickening of an aqueous micellar solution of cetyltrimethylammonium bromide and sodium tosylate. J Phys II France 7:1087–1098

    CAS  Google Scholar 

  72. Kim WJ, Yang SM (2000) Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological responses. J Colloid Interface Sci 232(2):225–234

    CAS  Google Scholar 

  73. Kim WJ, Yang SM (2001) Flow-induced microstructure in aqueous cationic surfactant solution in the presence of structure-enhancing additives. J Chem Eng Jpn 34(2):227–231

    CAS  Google Scholar 

  74. Hu H, Larson RG, Magda JJ (2002) Measurement of wall-slip-layer rheology in shear-thickening wormy micelle solutions. J Rheol 46(4):1001–1021

    CAS  Google Scholar 

  75. Gamez-Corrales R, Berret JF, Walker L, Oberdisse J (1999) Shear-thickening dilute surfactant solutions: the equilibrium structure as studied by small-angle neutron scattering. Langmuir 15:6755–6763

    CAS  Google Scholar 

  76. Truong M, Walker L (2002) Quantifying the importance of micellar microstructure and electrostatic interactions on the shear-induced structural transition of cylindrical micelles. Langmuir 18(6):2024–2031

    CAS  Google Scholar 

  77. Berret JF, Lerouge S, Decruppe J (2002) Kinetics of the shear-thickening transition observed in dilute surfactant solutions and investigated by flow birefringence. Langmuir 18:7279–7286

    CAS  Google Scholar 

  78. Berret JF, Gamez-Corrales R, Lerouge S, Decruppe J (2000a) Shear-thickening transition in surfactant solutions: new experimental features from rheology and flow birefringence. Eur Phys J E 2:343–350

    CAS  Google Scholar 

  79. Berret JF, Gamez-Corrales R, Séréro Y, Molino F, Lindner P (2001) Shear-induced micellar growth in dilute surfactant solutions. Europhys Lett 54:605–611

    CAS  Google Scholar 

  80. Bandyopadhyay R, Basappa G, Sood AK (2000) Observation of chaotic dynamics in dilute sheared aqueous solutions of ctat. Phys Rev Lett 84(9):2022–2025

    CAS  Google Scholar 

  81. Macias ER, Bautista F, Soltero JFA, Puig JE, Attane P, Manero O (2003) On the shear thickening flow of dilute ctat wormlike micellar solutions. J Rheol 47(3):643–658

    CAS  Google Scholar 

  82. Torres MF, Gonzalez JM, Rojas MR, Muller AJ, Saez AE, Lof D, Schillen K (2007) Effect of ionic strength on the rheological behavior of aqueous cetyltrimethylammonium p-toluene sulfonate solutions. J Colloid Interface Sci 307(1):221–228

    CAS  Google Scholar 

  83. Lu B, Li X, Scriven L, Davis H, Talmon Y, Zakin J (1998) Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 14:8–16

    CAS  Google Scholar 

  84. Qi Y, Zakin J (2002) Chemical and rheological characterization of drag-reducing cationic surfactant systems. Ind Eng Chem Res 41(25):6326–6336

    CAS  Google Scholar 

  85. Hofmann S, Rauscher A, Hoffmann H (1991) Shear induced micellar structures. Ber Bunsenges Phys Chem 95(2):153–164

    CAS  Google Scholar 

  86. Hu Y, Wang S, Jamieson A (1993a) Kinetic studies of a shear thickening micellar solution. J Colloid Interface Sci 156(1):31–37

    CAS  Google Scholar 

  87. Prtzl B, Springer J (1997) Light scattering experiments on shear induced structures of micellar solutions. J Colloid Interface Sci 190:327–333

    Google Scholar 

  88. Schmitt V, Schosseler F, Lequeux F (1995b) Structure of salt-free wormlike micelles – signature by sans at rest and under shear. Europhys Lett 30(1):31–36

    CAS  Google Scholar 

  89. Oda R, Panizzza P, Schmutz M, Lequeux F (1997) Direct evidence of the shear-induced structure of wormlike micelles: gemini 12-2-12. Langmuir 13:6407–6412

    CAS  Google Scholar 

  90. Oda R, Weber V, Lindner P, Pine D, Mendes E, Schloesser F (2000) Time-resolved small-angle neutron scattering study of shear-thickening surfactant solutions after the cessation of flow. Langmuir 14:4859–4863

    Google Scholar 

  91. Weber V, Schosseler F (2002) Shear-thickening in salt-free aqueous solutions of a gemini cationic surfactant: A study by small angle light scattering. Langmuir 18(25):9705–9712

    CAS  Google Scholar 

  92. Weber V, Narayanan T, Mendes E, Schosseler F (2003) Micellar growth in salt-free aqueous solutions of a gemini cationic surfactant: evidence for a multimodal population of aggregates. Langmuir 19(4):992–1000

    CAS  Google Scholar 

  93. Oelschlaeger C, Waton G, Candau SJ, Cates ME (2002b) Structural, kinetics, and rheological properties of low ionic strength dilute solutions of a dimeric (gemini) surfactant. Langmuir 18(20):7265–7271

    CAS  Google Scholar 

  94. Oda R, Lequeux F, Mendes E (1996) Evidence for local orientational order in salt-free wormlike micelles: a transient electric birefingence study. J Phys II France 6:1429–1439

    CAS  Google Scholar 

  95. Oda R, Narayanan J, Hassan P, Manohar C, Salkar R, Kern F, Candau S (1998) Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactant. Langmuir 14:4364–4372

    CAS  Google Scholar 

  96. Hu YT, Boltenhagen P, Pine DJ (1998b) Shear thickening in low-concentration solutions of wormlike micelles. i. direct visualization of transient behavior and phase transitions. J Rheol 42(5):1185–1208

    Google Scholar 

  97. Myska J, Stern P (1994) Properties of drag reducing micelle system. Colloid Polym Sci 272:542–547

    CAS  Google Scholar 

  98. Boltenhagen P, Hu YT, Matthys EF, Pine DJ (1997a) Inhomogeneous structure formation and shear-thickening in wormlike micellar solutions. Eur Phys Lett 38(5):389–394

    CAS  Google Scholar 

  99. Hu YT, Boltenhagen P, Matthys E, Pine DJ (1998a) Shear thickening in low-concentration solutions of wormlike micelles. ii. slip, fracture, and stability of the shear-induced phase. J Rheol 42(5):1209–1226

    Google Scholar 

  100. In M, Aguerre-Chariol O, Zana R (1999a) Closed-looped micelles in surfactant tetramer solutions. J Phys Chem B 103:7747–7750

    CAS  Google Scholar 

  101. In M, Aguerre-Chariol O, Zana R (1999b) Dynamics of branched threadlike micelles. Phys Rev lett 83:2278–2281

    CAS  Google Scholar 

  102. Lin Z, Zheng Y, Davis H, Scriven L, Talmon Y, Zakin J (2000) Unusual effects of counterion to surfactant concentration ratio on viscoelasticity of a cationic surfactant drag reducer. J Non-Newt Fluid Mech 93:363–373

    CAS  Google Scholar 

  103. Truong M, Walker L (2000) Controlling the shear-induced structural transition of rodlike micelles using nonionic polymer. Langmuir 16:7991–7998

    CAS  Google Scholar 

  104. Lee JY, Magda JJ, Hu H, Larson RG (2002) Cone angle effects, radial pressure profile, and second normal stress difference for shear-thickening wormlike micelles. J Rheol 46(1):195–208

    CAS  Google Scholar 

  105. Keller S, Boltenhagen P, Pine D, Zasadzinski J (1997) Direct observation of shear-induced structures in wormlike micellar solutions by freeze-fracture electron microscopy. Phys Rev Lett 80:2725–2728

    Google Scholar 

  106. Hoffmann H, Platz G, Rehage H, Schorr W (1981a) The influence of counter-ion concentration on the aggregation behaviour of viscoelastic detergents. Ber Bunsenges Phys Chem 85:877–882

    CAS  Google Scholar 

  107. Oelschlaeger C, Waton G, Candau S, Cates M (2002a) Structural, kinetics, and rheological properties of low ionic strength dilute solutions of a dimeric (gemini) surfactant. Langmuir 18(20):7265–7271

    CAS  Google Scholar 

  108. Berret JF, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P (1998a) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677–682

    CAS  Google Scholar 

  109. Deutsch M (1991) Orientational order determination in liquid crystals by X-ray diffraction. Phys Rev A 44:8264–8270

    Google Scholar 

  110. Barentin C, Liu AJ (2001) Shear thickening in dilute solutions of wormlike micelles. Europhys Lett 55:432–438

    CAS  Google Scholar 

  111. Schmitt V, Lequeux F (1995) SANS spectra and elastic plateau modulus in a charged wormlike micelles solution – effect of salt. J Phys II (France) 5(2):193–197

    CAS  Google Scholar 

  112. Larson R (1999) The Structure and rheology of complex fluids. New York University press, New York

    Google Scholar 

  113. Larson R (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    CAS  Google Scholar 

  114. Ajdari A (1998) Rheological behavior of a solution of particles aggregating on the containing walls. Phys Rev E 58(4):6294–6298

    CAS  Google Scholar 

  115. Goveas JL, Pine D (1999) A phenomenological model for shear-thickening in wormlike micelle solutions. Europhys Lett 48:706–712

    CAS  Google Scholar 

  116. Cates M, Turner M (1990) Flow-induced gelation of rodlike micelles. Europhys Lett 7: 681–686

    Google Scholar 

  117. Bruinsma R, Gelbart W, Ben-Shaul A (1992) Flow-induced gelation of living (micellar) polymers. J Chem Phys 96:7710–7727

    CAS  Google Scholar 

  118. Turner M, Cates M (1992) Flow-induced phase transition in rodlike micelles. J Phys Condens Matter 4:3719–3741

    Google Scholar 

  119. Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55(7–8):799–879

    CAS  Google Scholar 

  120. Olmsted PD (2008) Perspectives on shear-banding in complex fluids. Rheol Acta 47(3):283–300

    CAS  Google Scholar 

  121. Salmon JB, Manneville S, Colin A (2003b) Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys Rev E 68(5):051503

    Google Scholar 

  122. Salmon JB, Manneville S, Colin A (2003c) Shear banding in a lyotropic lamellar phase. II. Temporal fluctuations. Phys Rev E 68(5):051504

    Google Scholar 

  123. Berret JF, Serero Y (2001) Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys Rev Lett 87(4):048303

    CAS  Google Scholar 

  124. Manneville S, Colin A, Waton G, Schosseler F (2007) Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys Rev E 75(6):061502

    Google Scholar 

  125. Lettinga MP, Dhont JKG (2004) Non-equilibrium phase behaviour of rodlike viruses under shear flow. J Phys Cond Matt 16(38):S3929–S3939

    CAS  Google Scholar 

  126. Pujolle-Robic C, Noirez L (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers. Nature 409(6817):167–171

    CAS  Google Scholar 

  127. Volkova O, Cutillas S, Bossis G (1999) Shear banded flows and nematic-to-isotropic transition in ER and MR fluids. Phys Rev Lett 82(1):233–236

    CAS  Google Scholar 

  128. Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88(21):218301

    CAS  Google Scholar 

  129. Losert W, Bocquet L, Lubensky TC, Gollub JP (2000) Particle dynamics in sheared granular matter. Phys Rev Lett 85(7):1428–1431

    CAS  Google Scholar 

  130. Mueth DM, Debregeas GF, Karczmar GS, Eng PJ, Nagel SR, Jaeger HM (2000) Signatures of granular microstructure in dense shear flows. Nature 406(6794):385–389

    CAS  Google Scholar 

  131. Debregeas G, Tabuteau H, di Meglio JM (2001) Deformation and flow of a two-dimensional foam under continuous shear. Phys Rev Lett 87(17):178305

    CAS  Google Scholar 

  132. Lauridsen J, Chanan G, Dennin M (2004) Velocity profiles in slowly sheared bubble rafts. Phys Rev Lett 93(1):018303

    Google Scholar 

  133. Gilbreth C, Sullivan S, Dennin M (2006) Flow transitions in two-dimensional foams. Phys Rev E 74(5):051406

    Google Scholar 

  134. Cates ME, McLeish TCB, Marrucci G (1993) The rheology of entangled polymers at very high shear rates. Europhys Lett 21(4):451–456

    CAS  Google Scholar 

  135. Callaghan PT, Cates ME, Rofe CJ, Smeulders J (1996) A study of the “spurt effect” in wormlike micelles using nuclear magnetic resonance microscopy. J Phys II 6(3):375–393

    CAS  Google Scholar 

  136. Rehage H, Hoffmann H (1988b) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92(16):4712–4719

    CAS  Google Scholar 

  137. Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55(2):1668–1676

    CAS  Google Scholar 

  138. Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13(8):2227–2234

    CAS  Google Scholar 

  139. Britton MM, Mair RW, Lambert RK, Callaghan PT (1999) Transition to shear banding in pipe and couette flow of wormlike micellar solutions. J Rheol 43(4):897–909

    CAS  Google Scholar 

  140. Grand C, Arrault J, Cates ME (1997) Slow transients and metastability in wormlike micelle rheology. J Phys II 7(8):1071–1086

    CAS  Google Scholar 

  141. Mendez-Sanchez AF, Lopez-Gonzalez MR, Rolon-Garrido VH, Perez-Gonzalez J, de Vargas L (2003a) Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions. Rheol Acta 42(1–2):56–63

    CAS  Google Scholar 

  142. Schmitt V, Marques CM, Lequeux F (1995a) Shear-induced phase-separation of complex fluids – the role of flow-concentration coupling. Phys Rev E 52(4):4009–4015

    CAS  Google Scholar 

  143. Fielding SM, Olmsted PD (2003) Flow phase diagrams for concentration-coupled shear banding. Eur Phys J E 11(1):65–83

    CAS  Google Scholar 

  144. Lerouge S, Decruppe JP, Berret JF (2000) Correlations between rheological and optical properties of a micellar solution under shear banding flow. Langmuir 16(16):6464–6474

    CAS  Google Scholar 

  145. Mair RW, Callaghan PT (1996) Observation of shear banding in wormlike micelles by nmr velocity imaging. Eur Phys Lett 36(9):719–724

    CAS  Google Scholar 

  146. Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41(4):901–924

    CAS  Google Scholar 

  147. Britton MM, Callaghan PT (1997a) Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry. J Rheol 41(6):1365–1386

    CAS  Google Scholar 

  148. Britton MM, Callaghan PT (1997b) Two-phase shear band structures at uniform stress. Phys Rev Lett 78(26):4930–4933

    CAS  Google Scholar 

  149. Fischer P, Rehage H (1997) Non-linear flow properties of viscoelastic surfactant solutions. Rheol Acta 36(1):13–27

    CAS  Google Scholar 

  150. Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B 7(2):237–249

    CAS  Google Scholar 

  151. Porte G, Berret JF, Harden JL (1997) Inhomogeneous flows of complex fluids: mechanical instability versus non-equilibrium phase transition. J Phys II 7(3):459–472

    CAS  Google Scholar 

  152. Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L, Castrejon-Pita JR, Castrejon-Pita AA, Huelsz G (2003b) Particle image velocimetry of the unstable capillary flow of a micellar solution. J Rheol 47(6):1455–1466

    CAS  Google Scholar 

  153. Lee JY, Fuller GG, Hudson NE, Yuan XF (2005) Investigation of shear-banding structure in wormlike micellar solution by point-wise flow-induced birefringence measurements. J Rheol 49(2):537–550

    CAS  Google Scholar 

  154. Forster S, Konrad M, Lindner P (2005) Shear thinning and orientational ordering of wormlike micelles. Phys Rev Lett 94(1)

    Google Scholar 

  155. Manneville S, Salmon JB, Bécu L, Colin A, Molino F (2004b) Inhomogeneous flows in sheared complex fluids. Rheol Acta 43(5):408–416

    Google Scholar 

  156. Salmon JB, Colin A, Manneville S, Molino F (2003a) Velocity profiles in shear-banding wormlike micelles. Phys Rev Lett 90(22):228303

    Google Scholar 

  157. Hu YT, Lips A (2005) Kinetics and mechanism of shear banding in an entangled micellar solution. J Rheol 49(5):1001–1027

    CAS  Google Scholar 

  158. Miller E, Rothstein JP (2007) Transient evolution of shear-banding wormlike micellar solutions. J Non-Newt Fluid Mech 143(1):22–37

    CAS  Google Scholar 

  159. Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2003) Fluctuations in shear-banded flow seen by nmr velocimetry. Eur Phys Lett 64(2):274–280

    CAS  Google Scholar 

  160. Lopez-Gonzalez MR, Holmes WM, Callaghan PT, Photinos PJ (2004) Shear banding fluctuations and nematic order in wormlike micelles. Phys Rev Lett 93(26):268302

    CAS  Google Scholar 

  161. Lopez-Gonzalez MR, Holmes WM, Callaghan PT (2006) Rheo-nmr phenomena of wormlike micelles. Soft Matter 2(10):855–869

    CAS  Google Scholar 

  162. Ballesta P, Lettinga MP, Manneville S (2007) Superposition rheology of shear-banding wormlike micelles. J Rheol 51(5):1047–1072

    CAS  Google Scholar 

  163. Ballesta P, Manneville S (2005) Signature of elasticity in the faraday instability. Phys Rev E 71:026308

    Google Scholar 

  164. Ballesta P, Manneville S (2007) The faraday instability in wormlike micelle solutions. J Non-Newt Fluid Mech 147(1–2):23–34

    CAS  Google Scholar 

  165. Masselon C, Salmon JB, Colin A (2008) Nonlocal effects in flows of wormlike micellar solutions. Phys Rev Lett 1(3):38301

    Google Scholar 

  166. Cappelaere E, Cressely R, Decruppe JP (1995) Linear and nonlinear rheological behavior of salt-free aqueous ctab solutions. Colloids Surf A Physicochem Eng Asp 104(2-3):353–374

    CAS  Google Scholar 

  167. Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Coll and Polym Sci 273(4):346–351

    CAS  Google Scholar 

  168. Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56(2):1869–1878

    CAS  Google Scholar 

  169. Fischer E, Callaghan PT (2000) Is a birefringence band a shear band? Europhys Lett 50(6):803–809

    CAS  Google Scholar 

  170. Fischer E, Callaghan PT (2001) Shear banding and the isotropic-to-nematic transition in wormlike micelles. Phys Rev E 64(1):011501

    CAS  Google Scholar 

  171. Bécu L, Manneville S, Colin A (2004) Spatiotemporal dynamics of wormlike micelles under shear. Phys Rev Lett 93(1):018301

    Google Scholar 

  172. Bécu L, Anache D, Manneville S, Colin A (2007) Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. Phys Rev E 76(1):011503

    Google Scholar 

  173. Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear-induced transition near an isotropic-nematic transition in equilibrium polymers. Langmuir 10(3):955–961

    CAS  Google Scholar 

  174. Shikata T, Dahman SJ, Pearson DS (1994) Rheooptical behavior of wormlike micelles. Langmuir 10(10):3470–3476

    CAS  Google Scholar 

  175. Shikata T, Pearson DS (1994) Phase-transitions in entanglement networks of wormlike micelles. Langmuir 10(11):4027–4030

    CAS  Google Scholar 

  176. Fischer P, Fuller GG, Lin ZC (1997) Branched viscoelastic surfactant solutions and their response to elongational flow. Rheol Acta 36(6):632–638

    CAS  Google Scholar 

  177. Lerouge S, Decruppe JP, Humbert C (1998) Shear banding in a micellar solution under transient flow. Phys Rev Lett 81(24):5457–5460

    CAS  Google Scholar 

  178. Kadoma IA, vanEgmond JW (1996) “Tuliplike” scattering patterns in wormlike micelles under shear flow. Phys Rev Lett 76(23):4432–4435

    CAS  Google Scholar 

  179. Wheeler EK, Izu P, Fuller GG (1996) Structure and rheology of wormlike micelles. Rheol Acta 35(2):139–149

    CAS  Google Scholar 

  180. Kadoma IA, vanEgmond JW (1997) Shear-enhanced orientation and concentration fluctuations in wormlike micelles: effect of salt. Langmuir 13(17):4551–4561

    CAS  Google Scholar 

  181. Kadoma IA, Ylitalo C, vanEgmond JW (1997) Structural transitions in wormlike micelles. Rheol Acta 36(1):1–12

    CAS  Google Scholar 

  182. Kadoma IA, van Egmond JW (1998) Flow-induced nematic string phase in semidilute wormlike micelle solutions. Phys Rev Lett 80(25):5679–5682

    CAS  Google Scholar 

  183. Azzouzi H, Decruppe JP, Lerouge S, Greffier O (2005) Temporal oscillations of the shear stress and scattered light in a shear-banding-shear-thickening micellar solution. Eur Phys J E 17(4):507–514

    CAS  Google Scholar 

  184. Hashimoto T, Turukawa T, Mori N (2005) Flow property and micellar structures in capillary flows of surfactant solutions. Nihon Reoroji Gakkaishi 33(1):1–8

    CAS  Google Scholar 

  185. Inoue T, Inoue Y, Watanabe H (2005) Nonlinear rheology of ctab/nasal aqueous solutions: finite extensibility of a network of wormlike micelles. Langmuir 21(4):1201–1208

    CAS  Google Scholar 

  186. Drappier J, Bonn D, Meunier J, Lerouge S, Decruppe JP, Bertrand F (2006) Correlation between birefringent bands and shear bands in surfactant solutions. J Stat Mech-Theory Exp P04003

    Google Scholar 

  187. Decruppe JP, Greffier O, Manneville S, Lerouge S (2006) Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution. Phys Rev E 73(6):061509

    CAS  Google Scholar 

  188. Decruppe JP, Cappelaere E, Cressely R (1997) Optical and rheological properties of a semi-diluted equimolar solution of cetyltrimethylammonium bromide and potassium bromide. J Phys II (France) 7(2):257–270

    CAS  Google Scholar 

  189. Humbert C, Decruppe JP (1998b) Stress optical coefficient of viscoelastic solutions of cetyltrimethylammonium bromide and potassium bromide. Colloid Polym Sci 276(2):160–168

    CAS  Google Scholar 

  190. Radulescu O, Olmsted PD, Decruppe JP, Lerouge S, Berret JF, Porte G (2003) Time scales in shear banding of wormlike micelles. Europhys Lett 62(2):230–236

    CAS  Google Scholar 

  191. Lerouge S, Decruppe JP, Olmsted P (2004) Birefringence banding in a micellar solution or the complexity of heterogeneous flows. Langmuir 20(26):11,355–11,365

    Google Scholar 

  192. Cappelaere E, Cressely R (1997) Shear banding structure in viscoelastic micellar solutions. Colloid Polym Sci 275(5):407–418

    CAS  Google Scholar 

  193. Cappelaere E, Cressely R (1998) Rheological behavior of an elongated micellar solution at low and high salt concentrations. Colloid Polym Sci 276(11):1050–1056

    CAS  Google Scholar 

  194. Decruppe JP, Lerouge S, Berret JF (2001) Insight in shear banding under transient flow. Phys Rev E 63(2):022501

    CAS  Google Scholar 

  195. Lerouge S, Argentina M, Decruppe JP (2006) Interface instability in shear-banding flow. Phys Rev Lett 96(8):088301

    CAS  Google Scholar 

  196. Lerouge S, Fardin M, Argentina M, Gregoire G, Cardoso O (2008) Interface dynamics in shear-banding flow of giant micelles. Soft Matter 4(9):1808–1819

    CAS  Google Scholar 

  197. Berret JF, Roux DC, Porte G, Lindner P (1994b) Shear-induced isotropic-to-nematic phase-transition in equilibrium polymers. Europhys Lett 25(7):521–526

    CAS  Google Scholar 

  198. Berret JF, Roux DC, Lindner P (1998b) Structure and rheology of concentrated wormlike micelles at the shear-induced isotropic-to-nematic transition. Eur Phys J B 5(1):67–77

    CAS  Google Scholar 

  199. Berret JF, Porte G (1999) Metastable versus unstable transients at the onset of a shear-induced phase transition. Phys Rev E 60(4):4268–4271

    CAS  Google Scholar 

  200. Ganapathy R, Sood AK (2006a) Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling. Phys Rev Lett 96(10):108301

    Google Scholar 

  201. Soltero JFA, Puig JE, Manero O, Schulz PC (1995) Rheology of cetyltrimethylammonium tosilate-water system.1. relation to phase-behavior. Langmuir 11(9):3337–3346

    Google Scholar 

  202. Soltero JFA, Puig JE, Manero O (1996) Rheology of cetyltrimethylammonium tosylate-water system.2. linear viscoelastic regime. Langmuir 12(9):2654–2662

    Google Scholar 

  203. Soltero JFA, Bautista F, Puig JE, Manero O (1999) Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. nonlinear viscoelasticity. Langmuir 15(5):1604–1612

    Google Scholar 

  204. Hernandez-Acosta S, Gonzalez-Alvarez A, Manero O, Sanchez AFM, Perez-Gonzalez J, de Vargas L (1999) Capillary rheometry of micellar aqueous solutions. J Non-Newt Fluid Mech 85(2–3):229–247

    CAS  Google Scholar 

  205. Bautista F, Soltero JFA, Macias ER, Puig JE, Manero O (2002) Irreversible thermodynamics approach and modeling of shear-banding flow of wormlike micelles. J Phys Chem B 106(50):13018–13026

    CAS  Google Scholar 

  206. Bandyopadhyay R, Sood AK (2003) Effect of screening of intermicellar interactions on the linear and nonlinear rheology of a viscoelastic gel. Langmuir 19(8):3121–3127

    CAS  Google Scholar 

  207. Ganapathy R, Sood AK (2006b) Tuning rheochaos by temperature in wormlike micelles. Langmuir 22(26):11,016–11,021

    Google Scholar 

  208. Makhloufi R, Decruppe JP, Aït-Ali A, Cressely R (1995) Rheooptical study of wormlike micelles undergoing a shear banding flow. Europhys Lett 32(3):253–258

    CAS  Google Scholar 

  209. Aït-Ali A, Makhloufi R (1997a) Linear and nonlinear rheology of an aqueous concentrated system of cetyltrimethylammonium chloride and sodium salicylate. Phys Rev E 56(4):4474–4478

    Google Scholar 

  210. Aït-Ali A, Makhloufi R (1997b) On the nonlinear rheology of wormlike micellar system in the presence of sodium salicylate salt. J Rheol 41(2):307–318

    Google Scholar 

  211. Decruppe JP, Ponton A (2003) Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity. Eur Phys J E 10(3):201–207

    CAS  Google Scholar 

  212. Escalante JI, Macias ER, Bautista F, Perez-Lopez JH, Soltero JFA, Puig JE, Manero O (2003) Shear-banded flow and transient rheology of cationic wormlike micellar solutions. Langmuir 19(17):6620–6626

    CAS  Google Scholar 

  213. Angelescu D, Khan A, Caldararu H (2003) Viscoelastic properties of sodium dodecyl sulfate with aluminum salt in aqueous solution. Langmuir 19(22):9155–9161

    CAS  Google Scholar 

  214. Schubert BA, Wagner NJ, Kaler EW, Raghavan SR (2004) Shear-induced phase separation in solutions of wormlike micelles. Langmuir 20(9):3564–3573

    CAS  Google Scholar 

  215. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17(2):300–306

    CAS  Google Scholar 

  216. Hassan PA, Valaulikar BS, Manohar C, Kern F, Bourdieu L, Candau SJ (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12(18):4350–4357

    CAS  Google Scholar 

  217. Koehler RD, Raghavan SR, Kaler EW (2000) Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 104(47):11,035–11,044

    Google Scholar 

  218. Schubert BA, Kaler EW, Wagner NJ (2003) The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir 19(10):4079–4089

    CAS  Google Scholar 

  219. Mu JH, Li GZ, Jia XL, Wang HX, Zhang GY (2002) Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts. J Phys Chem B 106(44):11,685–11,693

    Google Scholar 

  220. Pimenta P, Pashkovski EE (2006) Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos. Langmuir 22(9):3980–3987

    CAS  Google Scholar 

  221. Soltero JFA, Alvarez-Ramirez JG, Fernandez VVA, Tepale N, Bautista F, Macias ER, Perez-Lopez JH, Schulz PC, Manero O, Solans C, Puig JE (2007) Phase and rheological behavior of the polymerizable surfactant CTAVB and water. J Colloid Interface Sci 312(1):130–138

    CAS  Google Scholar 

  222. Wheeler EK, Fischer P, Fuller GG (1998) Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J Non-Newt Fluid Mech 75(2–3):193–208

    CAS  Google Scholar 

  223. Fielding SM (2005) Linear instability of planar shear banded flow. Phys Rev Lett 95(13):134501

    CAS  Google Scholar 

  224. Fielding SM (2007b) Vorticity structuring and velocity rolls triggered by gradient shear bands. Phys Rev E 76(1):016311

    Google Scholar 

  225. Fielding SM (2007a) Complex dynamics of shear-banding flows. Soft Matter 3(1):1262–1279

    CAS  Google Scholar 

  226. Fischer P, Wheeler EK, Fuller GG (2002) Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheol Acta 41(1–2):35–44

    CAS  Google Scholar 

  227. Herle V, Fischer P, Windhab EJ (2005) Stress driven shear bands and the effect of confinement on their structures – a rheological, flow visualization, and rheo-sals study. Langmuir 21(20):9051–9057

    CAS  Google Scholar 

  228. Herle V, Kohlbrecher J, Pfister B, Fischer P, Windhab EJ (2007) Alternating vorticity bands in a solution of wormlike micelles. Phys Rev Lett 99(15):158,302

    Google Scholar 

  229. Herle V, Manneville S, Fischer P (2008) Alternating vorticity bands in a solution of wormlike micelles. Eur Phys J E 26(1):3–12

    CAS  Google Scholar 

  230. Marin-Santibanez BM, Perez-Gonzalez J, de Vargas L, Rodriguez-Gonzalez F, Huelsz G (2006) Rheometry – piv of shear-thickening wormlike micelles. Langmuir 22(9):4015–4026

    CAS  Google Scholar 

  231. Jindal V, Kalus J, Pilsl H, Hoffmann H, Lindner P (1990) Dynamic small angle neutron scattering study of rodlike micelles in surfactant solutions. J Phys Chem 94(7):3129–3138

    CAS  Google Scholar 

  232. Larson R (1988) Constitutive equations for polymer melt and solutions. Butterworth-Heinemann, UK

    Google Scholar 

  233. Menezes E, Graessley W (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci 20(10):1817–1833

    CAS  Google Scholar 

  234. Spenley NA, Yuan XF, Cates ME (1996) Nonmonotonic constitutive laws and the formation of shear-banded flows. J Phys II 6(4):551–571

    CAS  Google Scholar 

  235. Olmsted PD, Lu CYD (1997) Coexistence and phase separation in sheared complex fluids. Phys Rev E 56(1):R55–R58

    CAS  Google Scholar 

  236. Ganapathy R, Sood AK (2008) Nonlinear flow of wormlike micellar gels: regular and chaotic time-dependence of stress, normal force and nematic ordering. J Non-Newt Fluid Mech 149(1–3):78–86

    CAS  Google Scholar 

  237. Ott E (1993) Chaos in dynamical systems. Cambridge University Press, England

    Google Scholar 

  238. Fielding SM, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92(8):084502

    CAS  Google Scholar 

  239. Bandyopadhyay R, Sood AK (2001) Chaotic dynamics in shear-thickening surfactant solutions. Europhys Lett 56(3):447–453

    CAS  Google Scholar 

  240. Salmon JB, Colin A, Roux D (2002) Dynamical behavior of a complex fluid near an out-of-equilibrium transition: approaching simple rheological chaos. Phys Rev E 66(3):031505

    Google Scholar 

  241. Manneville S, Salmon JB, Colin A (2004c) A spatio-temporal study of rheo-oscillations in a sheared lamellar phase using ultrasound. Eur Phys J E 13(2):197–212

    CAS  Google Scholar 

  242. Wunenburger AS, Colin A, Leng J, Arneodo A, Roux D (2001) Oscillating viscosity in a lyotropic lamellar phase under shear flow. Phys Rev Lett 86(7):1374–1377

    CAS  Google Scholar 

  243. Courbin L, Panizza P, Salmon JB (2004) Observation of droplet size oscillations in a two-phase fluid under shear flow. Phys Rev Lett 92(1):018305

    Google Scholar 

  244. Lootens D, Van Damme H, Hebraud P (2003) Giant stress fluctuations at the jamming transition. Phys Rev Lett 90(17):178301

    Google Scholar 

  245. Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47(3): 301–318

    CAS  Google Scholar 

  246. Callaghan PT (2008) Rheo nmr and shear banding. Rheol Acta 47(3):243–255

    CAS  Google Scholar 

  247. Salmon JB, Manneville S, Colin A, Pouligny B (2003d) An optical fiber based interferometer to measure velocity profiles in sheared complex fluids. Eur Phys J Appl Phys 22(2):143–154

    CAS  Google Scholar 

  248. Manneville S, Bécu L, Colin A (2004a) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28(3):361–373

    Google Scholar 

  249. Callaghan PT (2006) Rheo-nmr and velocity imaging. Curr Opin Colloid Interface Sci 11(1):13–18

    CAS  Google Scholar 

  250. Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2004) Shear-induced constraint to amphiphile chain dynamics in wormlike micelles. Eur Phys Lett 66(1):132–138

    CAS  Google Scholar 

  251. Greco F, Ball RC (1997) Shear-band formation in a non-newtonian fluid model with a constitutive instability. J Non-Newt Fluid Mech 69(2–3):195–206

    CAS  Google Scholar 

  252. Olmsted PD, Radulescu O, Lu CYD (2000) Johnson-Segalman model with a diffusion term in cylindrical couette flow. J Rheol 44(2):257–275

    CAS  Google Scholar 

  253. Raudsepp A, Callaghan PT (2008) A rheo-optical study of shear rate and optical anisotropy in wormlike micelles solutions. Soft Matter 4(4):784–796

    CAS  Google Scholar 

  254. Fuller G (1995) Rheology of wormlike micelles: equilibrium properties and shear-banding transition In: Optical rheometry of complex fluids, Oxford University Press, New York

    Google Scholar 

  255. Humbert C, Decruppe JP (1998a) Flow birefringence and stress optical law of viscoelastic solutions of cationic surfactants and sodium salicylate. Eur Phys J B 6(4):511–518

    CAS  Google Scholar 

  256. Callaghan PT (1999) Rheo-nm nuclear magnetic resonance and the rheology of complex fluids. Rep on Prog in Phys 62(4):599–670

    CAS  Google Scholar 

  257. Helfand E, Fredrickson GH (1989) Large fluctuations in polymer-solutions under shear. Phys Rev Lett 62(21):2468–2471

    CAS  Google Scholar 

  258. Liberatore MW, Nettesheim F, Wagner NJ, Porcar L (2006) Spatially resolved small-angle neutron scattering in the 1-2 plane: a study of shear-induced phase-separating wormlike micelles. Phys Rev E 73(2):020504

    Google Scholar 

  259. Hilliou L, Vlassopoulos D (2002) Time-periodic structures and instabilities in shear-thickening polymer solutions. Ind Eng Chem Res 41(25):6246–6255

    CAS  Google Scholar 

  260. Dhont JKG, Lettinga MP, Dogic Z, Lenstra TAJ, Wang H, Rathgeber S, Carletto P, Willner L, Frielinghaus H, Lindner P (2003) Shear-banding and microstructure of colloids in shear flow. Faraday Discuss 123:157–172

    CAS  Google Scholar 

  261. Kang KG, Lettinga MP, Dogic Z, Dhont JKG (2006) Vorticity banding in rodlike virus suspensions. Phys Rev E 74(2):026307

    Google Scholar 

  262. Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94(1):371–375

    CAS  Google Scholar 

  263. Olmsted PD, Goldbart P (1990) Theory of the nonequilibrium phase-transition for nematic liquid-crystals under shear-flow. Phys Rev A 41(8):4578–4581

    Google Scholar 

  264. Dhont JKG (1999) A constitutive relation describing the shear-banding transition. Phys Rev E 60(4):4534–4544

    CAS  Google Scholar 

  265. Olmsted PD (1999a) Dynamics and flow-induced phase separation in polymeric fluids. Curr Opin Colloid Inter Sci 4(2):95–100

    CAS  Google Scholar 

  266. Radulescu O, Olmsted PD, Lu CYD (1999) Shear banding in reaction-diffusion models. Rheol Acta 38(6):606–613

    CAS  Google Scholar 

  267. Yuan XF (1999) Dynamics of a mechanical interface in shear-banded flow. Eur Phys Lett 46(4):542–548

    CAS  Google Scholar 

  268. Lu CYD, Olmsted PD, Ball RC (2000) Effects of nonlocal stress on the determination of shear banding flow. Phys Rev Lett 84(4):642–645

    CAS  Google Scholar 

  269. Radulescu O, Olmsted PD (2000) Matched asymptotic solutions for the steady banded flow of the diffusive johnson-segalman model in various geometries. J Non-Newt Fluid Mech 91(2–3):143–164

    CAS  Google Scholar 

  270. Adams J, Fielding S, Olmsted PD (2008) The interplay between boundary conditions and flow geometries in shear banding : hysteresis, band configurations, and surface transitions. J Non-Newt Fluid Mech 151(3):101–118

    CAS  Google Scholar 

  271. Olmsted PD (1999b) Two-state shear diagrams for complex fluids in shear flow. Europhys Lett 48(3):339–345

    CAS  Google Scholar 

  272. Aradian A, Cates ME (2005) Instability and spatiotemporal rheochaos in a shear-thickening fluid model. Eur Phys Lett 70(3):397–403

    CAS  Google Scholar 

  273. Aradian A, Cates ME (2006) Minimal model for chaotic shear banding in shear thickening fluids. Phys Rev E 73(4):041508

    CAS  Google Scholar 

  274. Wilson HJ (2006) Instabilities and constitutive modelling. Philos Trans R Soc A 364(1849):3267–3283

    Google Scholar 

  275. Fielding SM, Olmsted PD (2006) Nonlinear dynamics of an interface between shear bands. Phys Rev Lett 96(10):104502

    CAS  Google Scholar 

  276. Oswald P, Pieranski P (2000) Les cristaux liquides. Gordon and Breach, Amsterdam

    Google Scholar 

  277. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–649

    CAS  Google Scholar 

  278. Leadbetter A, Wrighton P (1979) Order parameters in sa, sc and n phases by X-ray diffraction. J Phys C3 40:234–242

    Google Scholar 

  279. Lawson K, Flautt T (1967) Magnetically oriented lyotropic liquid crystalline phase. J Am Chem Soc 89:5489–5491

    CAS  Google Scholar 

  280. Itri R, Amaral L (1990) Study of the isotropic-hexagonal transition in the system SLS/H2O. J Phys Chem 94:2198–2202

    CAS  Google Scholar 

  281. Quist PO, Halle B, Furo I (1992) Micelle size and order in lyotropic nematic phases from nuclear spin relaxation. J Chem Phys 96:3875–3891

    CAS  Google Scholar 

  282. Itri R, Amaral L (1993) Micellar-shape anisometry near isotropic-liquid-crystal phase transition. Phys Rev E 47:2551–2557

    CAS  Google Scholar 

  283. Berret JF, Roux DC (1995) Rheology of nematic wormlike micelles. J Rheol 39(4):725–741

    CAS  Google Scholar 

  284. Thiele T, Berret JF, Muller S, Schmidt C (2001) Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics. J Rheol 45(1):29–48

    CAS  Google Scholar 

  285. Clawson JS, Holland GP, Alam TM (2006) Magnetic alignment of aqueous ctab in nematic and hexagonal liquid crystalline phases investigated by spin-1 nmr. Phys Chem Chem Phys 8(22):2635–2641

    CAS  Google Scholar 

  286. De Melo Filho AA, Amadeu NS, Fujiwara FY (2007) The phase diagram of the lyotropic nematic mesophase in the ttab/nabr/water system. Liq Crys 34(6):683–691

    Google Scholar 

  287. Chen DM, Fujiwara FY, Reeves LW (1977) Studies of behavior in magnetic-fields of some lyomesophase systems with respect to electrolyte additions. Can J Chem-Rev Can Chim 55(12):2396–2403

    CAS  Google Scholar 

  288. Hendrikx Y, Charvolin J (1981) Structural relations between lyotropic phases in the vicinity of the nematic phases. J Phys 42:1427–1440

    CAS  Google Scholar 

  289. Hendrikx Y, Charvolin J, Rawiso M, Liebert L, Holmes M (1983) Anisotropic aggregates of amphiphilic molecules in lyotropic nematic phases. J Phys Chem 87:3991–3999

    CAS  Google Scholar 

  290. Caputo FE, Ugaz VM, Burghardt WR, Berret JF (2002) Transient 1-2 plane small-angle X-ray scattering measurements of micellar orientation in aligning and tumbling nematic surfactant solutions. J Rheol 46(4):927–946

    CAS  Google Scholar 

  291. Semenov A, Khokhlov A (1988) Statistical physics of liquid-crystalline polymers. Sov Phys Usp 31:988–1014

    Google Scholar 

  292. Khokhlov A, Semenov A (1981) Liquid-crystalline ordering in the solution of long persistent chains. Physica A 108:546–556

    Google Scholar 

  293. Richtering W, Laeuger J, Linemann R (1994) Shear orientation of a micellar hexagonal liquid crystalline phase: a rheo and small angle light scattering study. Langmuir 10(11):4374–4379

    CAS  Google Scholar 

  294. Lukaschek M, Grabowski D, Schmidt C (1995) Shear-induced alignment of a hexagonal lyotropic liquid crystal as studied by rheo-nmr. Langmuir 11(9):3590–3594

    CAS  Google Scholar 

  295. Muller S, Fischer P, Schmidt C (1997) Solid-like director reorientation in sheared hexagonal lyotropic liquid crystals as studied by nuclear magnetic resonance. J Phys II France 7:421–432

    Google Scholar 

  296. Schmidt G, Muller S, Lindner P, Schmidt C, Richtering W (1998) Shear orientation of lyotropic hexagonal phases. J Phys Chem B 102(3):507–513

    CAS  Google Scholar 

  297. Schmidt C (2008) Rheo-nmr spectroscopy. Modern Magnetic Resonance 3:1515–1521

    Google Scholar 

  298. Ramos L, Molino F, Porte G (2000) Shear melting in lyotropic hexagonal phases. Langmuir 16(14):5846–5848

    CAS  Google Scholar 

  299. Ramos L (2001) Scaling with temperature and concentration of the nonlinear rheology of a soft hexagonal phase. Phys Rev E 64(6):061502

    CAS  Google Scholar 

  300. Ramos L, Molino F (2004) Shear melting of a hexagonal columnar crystal by proliferation of dislocations. Phys Rev Lett 92(1):018301

    Google Scholar 

  301. Roux DC, Berret JF, Porte G, Peuvrel-Disdier E, Lindner P (1995) Shear-induced orientations and textures of nematic wormlike micelles. Macromolecules 28(5):1681–1687

    CAS  Google Scholar 

  302. Berret JF, Roux DC, Porte G, Lindner P (1995) Tumbling behavior of nematic wormlike micelles under shear-flow. Europhys Lett 32(2):137–142

    CAS  Google Scholar 

  303. Caputo FE, Burghardt WR, Berret JF (1999) Tumbling dynamics in a nematic surfactant solution in transient shear flows. J Rheol 43(3):765–779

    CAS  Google Scholar 

  304. Burghardt W, Fuller G (1991) Role of director tumbling in the rheology of polymer liquid crystal solutions. Macromolecules 24(9):2546–2555

    CAS  Google Scholar 

  305. Moldenaers P, Yanase H, Mewis J (1991) Flow-induced anisotropy and its decay in polymeric liquid crystals. J Rheol 35(8):1681–1699

    CAS  Google Scholar 

  306. Larson R, Doi M (1991) Mesoscopic domain theory for textured liquid crystalline polymers. J Rheol 35:539–563

    CAS  Google Scholar 

  307. Srinivasarao M (1992) Rheology and rheo-optics of polymer liquid crystals: an overview of theory and experiment. Chemtracts Macromol Chem 3:149–178

    CAS  Google Scholar 

  308. Takahashi Y, Kurashima N, Noda I, Doi M (1994) Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids. J Rheol 38(3):699–712

    Google Scholar 

  309. Thiele T, Berret JF, Mueller S, Schmidt C (1998) Rheology and nmr measurements on sds/decanol/water. In: 5th European Rheology Conference, Portoroz (Slovenia)

    Google Scholar 

  310. Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. I. J Chem Phys 95(2):1242–1248

    CAS  Google Scholar 

  311. Larson RG, Mead DW (1993) The ericksen number and deborah number cascades in sheared polymeric nematics. Liq Crys 15(2):151–169

    CAS  Google Scholar 

  312. Marrucci G (1985) Rheology of liquid crystalline polymers. Pure and Appl Chem 57:1545–1552

    CAS  Google Scholar 

  313. Larson R, Mead D (1992) Development of orientation and texture during shearing of liquid-crystalline polymers. Liq Cryst 12:751–768

    CAS  Google Scholar 

  314. Vermant J, Moldenaers P, Mewis J, Picken S (1994) Band formation upon cessation of flow in liquid-crystalline polymers. J Rheol 38:1571–1589

    CAS  Google Scholar 

  315. Noirez L, Lapp A (1997) Shear flow induced transition from liquid-crystalline to polymer behavior in side-chain liquid crystal polymers. Phys Rev lett 78:70–73

    CAS  Google Scholar 

  316. Zipfel J, Berghausen J, Lindner P, Richtering W (1999) Influence of shear on lyotropic lamellar phases with different membranes defects. J Phys Chem B 103:2841–2849

    CAS  Google Scholar 

  317. Berret JF, Vermant J, Noirez L (2000b) Lyotropic surfactant nematics under shear: neutron scattering in the vorticity plane. In: XIIIth international Congress on Rheology, Cambridge (UK), vol 3, pp 273–275

    Google Scholar 

  318. Ekwall P, Mandell L, Fontell K (1969) The cetyltrimethylammonium bromide-hexanol-water system. J Colloid Interface Sci 29(4):639–646

    CAS  Google Scholar 

  319. Hongladarom K, Burghardt W (1994) Measurements of the full refractive index tensor in sheared liquid-crystalline polymer solutions. Macromolecules 27:483–489

    CAS  Google Scholar 

  320. Grabowski D, Schmidt C (1994) Simultaneous measurements of shear viscosity and director orientation of a side-chain liquid crystalline polymer by rheo-NMR. Macromolecules 27:2632–2640

    CAS  Google Scholar 

  321. Siebert H, Grabowski D, Schmidt C (1997) Rheo-nmr study of non-flow-aligning side-chain liquid crystal polymer in nematic solution. Rheol Acta 36:618–627

    CAS  Google Scholar 

Download references

Acknowledgements

The present review would not have been possible without the extended network of colleagues and friends being, as we are, fascinated by this subject. It is a pleasure to acknowledge the collaborations and the fruitful discussions we had over the years with Jacqueline Appell, Wesley Burghardt, Olivier Cardoso, Jean-Louis Counord, Jean-Paul Decruppe, Marc-Antoine Fardin, Olivier Greffier, Guillaume Grégoire, Heinz Hoffmann, Sébastien Manneville, François Molino, Julian Oberdisse, Peter Olmsted, Grégoire Porte, Ovidiu Radulescu, Jean-Baptiste Salmon, Claudia Schmidt, Jean-François Tassin, and Lynn Walker. The Laboratoire Léon Brillouin (CEA, Saclay, France), the Institute Laue-Langevin, and the European Synchrotron Radiation Facilities (Grenoble, France) are also acknowledged for their technical and financial supports. We have also benefited from research organizations and fundings, such as the GDR 1081 “Rhéophysique des Colloides et Suspensions”, European TMR-Network “Rheology of Liquid Crystals” contract number FMRX-CT96-0003 (DG 12 - ORGS), Agence Nationale pour la Recherche (ANR JCJC-0020). We are finally very grateful to Sébastien Manneville for his comments on the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Berret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this chapter

Cite this chapter

Lerouge, S., Berret, JF. (2009). Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles. In: Dusek, K., Joanny, JF. (eds) Polymer Characterization. Advances in Polymer Science, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_13

Download citation

Publish with us

Policies and ethics