Skip to main content

On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing

  • Chapter
  • First Online:
Polymer Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 231))

Abstract

For most industrial applications, exfoliation is much preferred to intercalation in organoclay nanocomposites. Mechanisms leading to exfoliated nanocomposites prepared by mixing are presented with specific examples reported in the literature. It is pointed out that in the preparation, via mixing, of nanocomposites based on thermoplastic polymers or thermoplastic elastomers, exfoliation of the aggregates of layered silicate platelets requires strong attractive interactions between the clay surface (with or without chemical modification) and polymer matrix, giving rise to enhanced compatibility between the two and hence a highly dispersed (nearly exfoliated) nanocomposite. In this chapter, four different specific interactions (ionic, ion–dipole, hydrogen bonding, and coulombic) are illustrated to demonstrate the effectiveness of offering strong attractive interactions between the clay surface (with or without chemical modifications) and the polymer matrix in the preparation of exfoliated nanocomposites based on thermoplastic polymers or thermoplastic elastomers by mixing. It is pointed out further that van der Waals force is not strong enough to exfoliate the aggregates of layered silicate platelets, giving rise to intercalated nanocomposites at best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6TPy:

6-(2,2:6,2′′-terpyridyl-4-oxy)hexane

CP:

Cross polarization

CT:

Contact time

DMF:

N,N-Dimethylformamide

EVA:

Poly(ethylene-ran-vinyl acetate)

EVAOH:

Poly(ethylene-ran-vinyl acetate-ran-vinyl alcohol)

EVOH:

Poly(ethylene-ran-vinyl alcohol)

FTIR:

Fourier transform infrared

GPC:

Gel permeation chromatography

HMW:

High molecular weight

IS:

Polyisoprene-block-polystyrene

ISB:

Polyisoprene-block-polystyrene-block-polybutadiene

ISBOH:

Polyisoprene-block-polystyrene-block-hydroxylated polybutadiene

MA:

Maleic anhydride

MAS:

Magic-angle spinning

MLCT:

Metal-to-ligand charge transfer

MMT:

Montmorillonite

MMW:

Medium molecular weight

ODT:

Order–disorder transition

PC:

Polycarbonate

PEMA:

Poly(ethylene-co-methacrylate)

PI:

Polyisoprene

PIOH:

Hydroxylated polyisoprene

POM:

Polarized optical microscopy

PS:

Polystyrene

PSHMW:

High molecular-weight polystyrene

PSLMW:

Low molecular-weight polystyrene

PVAc:

Poly(vinyl acetate)

PVPh:

Poly(vinylphenol)

P2VP:

Poly(2-vinylpyridine)

Ru:

Ruthenium

RuCl 3 :

Ruthenium chloride

S2VP:

Polystyrene-block-poly(2-vinylpyridine)

SB:

Polystyrene-block-polybutadiene

SBS:

Polystyrene-block-polybutadiene-block-polystyrene

SEB:

Polystyrene-block-poly(ethylene-co-1-butene)

SEBS:

Polystyrene-block-poly(ethylene-co-1-butene)-block-polystyrene

SI:

Polystyrene-block-polyisoprene

SIOH:

Polystyrene-block-hydroxylated polyisoprene

SIOHS:

Polystyrene-block-hydroxylated polyisoprene-block-polystyrene

SIS:

Polystyrene-block-polyisoprene-block-polystyrene

TCH :

Cross polarization time

Tcl :

Clearing temperature

TEM:

Transmission electron microscopy

Tg :

Glass transition temperature

THF:

Tetrahydrofuran

TLCP:

Thermotropic liquid-crystalline polymer

TODT :

Order–disorder transition temperature

\({\mathrm{T}}_{1\rho \mathrm{C}}\) :

Carbon spin-lattice relaxation time in the rotating frame

\({\mathrm{T}}_{1\rho \mathrm{H}}\) :

Proton spin-lattice relaxation time in the rotating frame

UV-vis:

Ultraviolet-visual

XRD:

X-ray diffraction

χ:

Flory–Huggins interaction parameter

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci Polym Chem Ed 31:983–986

    Article  CAS  Google Scholar 

  3. Usuki A, Kawasumi M, Kojima Y, Fukushima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res 8:1174–1178

    Article  CAS  Google Scholar 

  4. Maiti P, Okamoto M (2003) Crystallization controlled by silicate surfaces in nylon 6-clay nanocomposites. Macromol Mater Eng 288:440–445

    Article  CAS  Google Scholar 

  5. Choi S, Lee KM, Han CD (2004) Effects of triblock copolymer architecture and the degree of functionalization on the organoclay dispersion and rheology of nanocomposites. Macromolecules 37:7649–7662

    Article  CAS  Google Scholar 

  6. Lee KM, Han CD (2003) Linear dynamic viscoelastic properties of functionalized block copolymer/organoclay nanocomposites. Macromolecules 36:804–815

    Article  CAS  Google Scholar 

  7. Zha W, Han CD, Han SH, Lee DH, Kim JK, Guo M, Rinaldi PL (2009) Ion–dipole interactions in the dispersion of organoclay nanocomposites based on polystyrene-block-poly(2-vinylpyridine) copolymer. Polymer 50:2411–2423.

    Google Scholar 

  8. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    Article  CAS  Google Scholar 

  9. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30:6333–6338

    Article  CAS  Google Scholar 

  10. Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A (2001) A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer 42:9633–9640

    Article  CAS  Google Scholar 

  11. Reichert P, Hoffmann B, Bock T, Thomann R, Mülhaupt R, Fredrich C (2001) Morphological stability of polypropylene nanocomposites. Macromol Rapid Commun 22:519–523

    Article  CAS  Google Scholar 

  12. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  CAS  Google Scholar 

  13. Han CD (2007) Rheology and processing polymeric materials. Vol 2: Polymer processing Oxford University Press, New York, chap 4

    Google Scholar 

  14. Akelah A, Moet A (1996) Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31:3589–3596

    CAS  Google Scholar 

  15. Heinemann J, Reichert P, Thomson R, Mülhaupt R (1999) Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethene homo- and copolymerization in the presence of layered silicates. Macromol Rapid Commun 20:423–430

    Article  CAS  Google Scholar 

  16. Hoffmann B, Kressler J, Stöpelmann G, Friedrich C, Kim GM (2000) Rheology of nanocomposites based on layered silicates and polyamide-12. Colloid Polym Sci 278:629–639

    Article  CAS  Google Scholar 

  17. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(ε–caprolactone)-layered silicate nanocomposites. J Polym Sci Polym Chem Ed 33:1047–1057

    Article  CAS  Google Scholar 

  18. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide-clay hybrid. J Polym Sci Polym Chem Ed 31:2493–2498

    Article  CAS  Google Scholar 

  19. Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30:7990–7999

    Article  CAS  Google Scholar 

  20. Balazs AC, Singh C, Zhulina E (1998) Modeling the intercalations between polymers and clay surface through self-consistent field theory. Macromolecules 31:8370–8381

    Article  CAS  Google Scholar 

  21. Lee JY, Baljon ARC, Sogan DY, Loring RF (2000) Molecular dynamics study of the intercalation of diblock copolymers into layered silicates. J Chem Phys 112:9112–9119

    Article  CAS  Google Scholar 

  22. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Vol 2: Kinetic theory, 2nd edn. Wiley, New York

    Google Scholar 

  23. Grest GS, Lacasse MD, Kremer K, Gupta AM (1996) Efficient continuum model for simulating polymer blends and copolymers. J Chem Phys 105:10583–10594

    Article  CAS  Google Scholar 

  24. Murat M, Grest GS, Kremer K (1999) Statics and dynamics of symmetric diblock copolymers: a molecular dynamics simulation. Macromolecules 32:595–609

    Article  CAS  Google Scholar 

  25. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, New York

    Google Scholar 

  26. Yang Z, Han CD (2008) Rheology of miscible polymer blends with hydrogen bonding. Macromolecules 41:2104–2118

    Article  CAS  Google Scholar 

  27. Bennett RH, Hulber MH (1986) Clay microstructure. International Human Resources Development, Boston

    Book  Google Scholar 

  28. Grim RE (1968) Clay minerology, 2nd edn. McGraw Hill, New York

    Google Scholar 

  29. Theng BK (1974) The chemistry of clay-organic reactions. Wiley, New York

    Google Scholar 

  30. van Olphen H (1977) Clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  31. Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36:7165–7178

    Article  CAS  Google Scholar 

  32. Brown HC (1962) Hydroboration. Benjamin, New York

    Google Scholar 

  33. Chung TC, Raate M, Berluche E, Schulz DN (1988) Synthesis of functional hydrocarbon polymer with well-defined molecular structures. Macromolecules 21:1903–1907

    Article  CAS  Google Scholar 

  34. Lee KM, Han CD (2002) Order-disorder transition induced by the hydroxylation of homogeneous polystyrene-block-polyisoprene copolymer. Macromolecules 35:760–769

    Article  CAS  Google Scholar 

  35. Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene-clay nanocomposites prepared by solution blending. Polymer 44:5749–5758

    Article  CAS  Google Scholar 

  36. Koopmans RJ, van der Linden R, Vansant EF (1980) The characterization of newly developed and promising hydrolyzed ethylene vinyl acetate copolymers. J Adhesion 11:191–202

    Article  CAS  Google Scholar 

  37. Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends. Technomic, Lancaster, Pennsylvania

    Google Scholar 

  38. Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A, Jérôme R, Dubois P (2001) Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromol Rapid Commun 22:643–646

    Article  CAS  Google Scholar 

  39. Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A, Jérôme R, Dubois P (2001) One-pot preparation of polymer/clay nanocomposites starting from Na+ montmorillonite. 1. Intercalation of ethylene-vinyl acetate polymer. Chem Mater 13:3830–3832

    Article  CAS  Google Scholar 

  40. Gelfer MY, Burger C, Chu B, Hsiao BS, Drozdov AD, Si M, Rafailovich M, Sauer BB, Gilman JW (2005) Relationships between structure and rheology in model nanocomposites of ethylene-vinyl based copolymers and organoclays. Macromolecules 38:3765–3775

    Article  CAS  Google Scholar 

  41. Lee KM, Han CD (2003) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44:4573–4588

    Article  CAS  Google Scholar 

  42. Painter PC, Coleman MM (1997) Fundamentals of polymer science, 2nd edn. Technomic, Lancaster, Pennsylvania

    Google Scholar 

  43. Abbate M, Martuschelli E, Musto P, Ragosta G, Scarinzi G (1984) Toughening of a highly cross-linked epoxy resin by reactive blending with bisphenol A polycarbonate. I. FTIR spectroscopy. J Polym Sci Polym Phys Ed 32:395–408

    Article  Google Scholar 

  44. Yoon PJ, Hunter DL, Paul DR (2003) Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer 44:5323–5339

    Article  CAS  Google Scholar 

  45. Chen H, Schmidt DF, Pitsikalis M, Hadjichristidis N, Zhang Y, Wiesner U, Giannelis IP (2003) Poly(styrene-block-isoprene) nanocomposites: kinetics of intercalation and effects of copolymer on intercalation behavior. J Polym Sci Polym Phys Ed 41:3264–3271

    Article  CAS  Google Scholar 

  46. Mitchell CA, Krishnamoorti R (2002) Rheological properties of diblock copolymer/layered-silicate nanocomposites. J Polym Sci Polym Phys Ed 40:1434–1443

    Article  CAS  Google Scholar 

  47. Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based on layered-silicate nanocomposites. Macromolecules 33:3739–3746

    Article  CAS  Google Scholar 

  48. Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36:4443–4451

    Article  CAS  Google Scholar 

  49. Ha YH, Thomas EL (2002) Deformation behavior of a roll-cast layered-silicate/lamellar triblock copolymer nanocomposite. Macromolecules 35:4419–4428

    Article  CAS  Google Scholar 

  50. Liao M, Zhu J, Xu H, Li Y, Shan W (2004) Preparation and structure and mechanical properties of poly(styrene-block-butadiene)/clay nanocomposites. J Appl Polym Sci 92:3430–3434

    Article  CAS  Google Scholar 

  51. Silva AS, Mitchell CA, Tse MF, Wang HC, Krishnamoorti R (2001) Templating of cylindrical and spherical block copolymer microdomains by layered silicates. J Chem Phys 115:7166–7174

    Article  CAS  Google Scholar 

  52. Krishnamoorti R, Silva AS, Mitchell CA (2001) Effect of silicate layer anisotropy on cylindrical and spherical microdomain ordering in block copolymer nanocomposites. J Chem Phys 115:7175–7181

    Article  CAS  Google Scholar 

  53. Hasegawa N, Usuki A (2003) Arranged microdomain structures induced by clay silicate layers in block copolymer-clay nanocomposites. Polym Bull 51:77–83

    Article  CAS  Google Scholar 

  54. Ha YH, Kwon Y, Breiner T, Chan EP, Tzianetopoulou T, Cohen RE, Boyce MC, Thomas EL (2005) An orientationally ordered hierarchical exfoliated clay-block copolymer nanocomposite. Macromolecule 38:5170–5179

    Article  CAS  Google Scholar 

  55. Zha W, Choi S, Lee KM, Han CD (2005) Dispersion characteristics of organoclay in nanocomposites based on end-functionalized homopolymer and block copolymer. Macromolecules 38:8418–8429

    Article  CAS  Google Scholar 

  56. Zhao H, Shipp DA (2003) Preparation of poly(styrene-butylacrylate) block copolymer-silicate nanocomoposites. Chem Mater 15:2693–2695

    Article  CAS  Google Scholar 

  57. Di J, Sogah DY (2006) Intergallery living polymerization using silicate-anchored photoiniferter: a versatile preparatory method for exfoliated silicate nanocomposites. Macromolecules 39:1020–1028

    Article  CAS  Google Scholar 

  58. Huang W, Han CD (2006) Dispersion characteristics and rheology of organoclay nanocomposites based on a segmented main-chain liquid-crystalline polymer having pendent pyridyl group. Macromolecules 39:257–267

    Article  CAS  Google Scholar 

  59. Huang W, Han CD (2006) Dispersion characteristics and rheology of organoclay nanocomposites based on a segmented main-chain liquid crystalline polymer having side-chain azopyridine with flexible spacers. Polymer 47:4400–4410

    Article  CAS  Google Scholar 

  60. Sato A, Kato T, Uryu T (1996) Hydrogen-bonded liquid-crystalline polymer blends formed from a thermotropic polyester containing a lateral pyridyl groups and poly(4-vinylphenol). J Polym Sci Polym Chem Ed 34:503–505

    Article  CAS  Google Scholar 

  61. Vaia RA, Giannelis EP (2001) Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates. Polymer 42:1281–1285

    Article  CAS  Google Scholar 

  62. Chang JH, Seo BS, Hwang SH (2002) An exfoliation of organoclay in thermotropic liquid crystalline polyester nanocomposite. Polymer 43:2969–2974

    Article  CAS  Google Scholar 

  63. Tachino H, Hara H, Hirasawa E, Kutsumizu S, Yano S (1994) Structure and properties of ethylene ionomers neutralized with binary metal cations. Macromolecules 27:372–378

    Article  CAS  Google Scholar 

  64. Kutsumizu S, Hara H, Tachino H, Shimabayashi K, Yano S (1999) Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid). Macromolecules 32:6340–6347

    Article  CAS  Google Scholar 

  65. Beyer FL, Beck Tan NC, Dasgupta A, Galvin ME (2002) Polymer-layered silicate nanocomposites from model surfactants. Chem Mater 14:2983–2988

    Article  CAS  Google Scholar 

  66. Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mülhaupt R (2000) Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol Rapid Commun 21:57–61

    Article  CAS  Google Scholar 

  67. Lim YT, Park OO (2001) Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheol Acta 40:220–229

    Article  CAS  Google Scholar 

  68. Sikka M, Cerini LN, Ghosh SS, Winey KI (1996) Melt intercalation of polystyrene in layered silicate. J Polym Sci Polym Phys Ed 34:1443–1449

    Article  CAS  Google Scholar 

  69. Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer matrix in layered silicates. Chem Mater 5:1694–1696

    Article  CAS  Google Scholar 

  70. Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically modified layered silicates: model prediction and experiment. Macromolecules 30:8000–8008

    Article  CAS  Google Scholar 

  71. Wang ZM, Nakajima H, Manias E, Chung T (2003) Exfoliated PP/clay nanocomposites using ammonium terminated PP as the organic modification for montmorillonite. Macromolecules 36:8919–8922

    Article  CAS  Google Scholar 

  72. Sakamoto N, Hashimoto T (1998) Ordering dynamics of a symmetric polystyrene-block-polyisoprene. 1. Ordering mechanism from the disordered state. Macromolecules 31:3292–3302

    Article  CAS  Google Scholar 

  73. Gouinlock EV, Porter RS (1977) Linear dynamic mechanical properties of an SBS block copolymer. Polym Eng Sci 17:535–543

    Article  Google Scholar 

  74. Choi S, Han CD (2003) Phase transition in end-functionalized polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 36:6220–6228

    Article  CAS  Google Scholar 

  75. Huang W, Han CD (2006) Ruthenium(II) complex-induced dispersion of montmorillonite in a segmented main-chain liquid-crystalline polymer having side-chain terpyridine group. Macromolecules 39:8207–8209

    Article  CAS  Google Scholar 

  76. Joshi V, Kotkar D, Ghosh PK (1986) On the interaction of poly(pyridine)ruthenium (II) optical antipodes intercalated in montmorillonite clay. J Am Chem Soc 108:4650–4651

    Article  CAS  Google Scholar 

  77. Schoonheydt RA, Pauw PD, Vliers D, Schrijver FCD (1984) Luminescence of tris(2,2-bispyridine) ruthenium(II) in aqueous clay minerals suspensions. J Phys Chem 88:5113–5118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge that the American Chemical Society and Elsevier gave me permissions to reproduce some of the figures appearing in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Dae Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Han, C.D. (2009). On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing. In: Lee, KS., Kobayashi, S. (eds) Polymer Materials. Advances in Polymer Science, vol 231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_21

Download citation

Publish with us

Policies and ethics