Skip to main content

Bio-Organic Optoelectronic Devices Using DNA

  • Chapter
  • First Online:
Organic Electronics

Part of the book series: Advances in Polymer Science ((POLYMER,volume 223))

Abstract

Biomolecular DNA, as a marine waste product from salmon processing, has been exploited as biodegradable polymeric material for photonics and electronics. For preparing high optical quality thin films of DNA, a method using DNA with cationic surfactants such as DNA–cetyltrimethylammonium, CTMA has been applied. This process enhances solubility and processing for thin film fabrication. These DNA–CTMA complexes resulted in the formation of self-assembled supramolecular films. Additionally, the molecular weight can be tailored to suit the application through sonication. It revealed that DNA–CTMA complexes were thermostable up to 230 C. UV–VIS absorption shows that these thin films have high transparency from 350 to about 1,700 nm. Due to its nature of large band gap and large dielectric constant, thin films of DNA–CTMA has been successfully used in multiple applications such as organic light emitting diodes (OLED), a cladding and host material in nonlinear optical devices, and organic field-effect transistors (OFET). Using this DNA based biopolymers as a gate dielectric layer, OFET devices were fabricated that exhibits current–voltage characteristics with low voltages as compared with using other polymer-based dielectrics. Using a thin film of DNA–CTMA based biopolymer as the gate insulator and pentacene as the organic semiconductor, we have demonstrated a bio-organic FET or BioFET in which the current was modulated over three orders of magnitude using gate voltages less than 10 V. Given the possibility to functionalise the DNA film customised for specific purposes viz. biosensing, DNA–CTMA with its unique structural, optical and electronic properties results in many applications that are extremely interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alq3 :

Tris-(8-hydroxyquinoline) aluminum

BCP:

2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline

BioFET:

Bio-organic field-effect transistors

BioLED:

Bio-organic light emitting diodes

CTMA:

Hexadecyltrimethylammonium chloride

EBL:

Electron blocking layer

EIL:

Electron injection layer

ETL:

Electron transport layer

HBL:

Hole blocking layer

I Drain,Sat :

Saturated drain current

LCD:

Liquid crystal displays

NPB:

(N, N -Bis(naphthalene-1-yl)-N, N -bis(phenyl)benzidine)

PCBM:

1-(3-Methoxycarbonyl)propyl-1-phenyl (66]C61

PEDOT:

[Poly(3,4-ethylenedioxythiophene)]

PSS:

Poly(4-styrenesulfonate)

T :

Temperature

V Drain :

Drain voltage

V Gate :

Gate voltage

V t :

Threshold voltage

References

  1. Huitema HE, Gelinck GH, Van Veenendaal E, Cantatore E, Touwslager FJ et al. (2003) A flexible QVGA display with organic transistors. IDW (Informations-dienst-wissenschaft) 1663

    Google Scholar 

  2. Darlinski G, Böttger U, Waser R, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C (2005) J Appl Phys 97:093708

    Article  Google Scholar 

  3. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Appl Phys Lett 78:2229

    Article  CAS  Google Scholar 

  4. Robinson BH, Seaman NC (1987) Protein Eng 295:1

    Google Scholar 

  5. Yan H, Zhang X, Shen Z, Seeman NE (2002) Nature 62:415

    Google Scholar 

  6. Turberfield A (2003) Phys World 43:16

    Google Scholar 

  7. Braun E, Eichen Y, Sivan U, Yoseph GB (1998) Nature 291:775

    Article  Google Scholar 

  8. de Pablo PJ, Moreno-Herrero F, Colchero J, Gómez Herrero J, Herrero P, Baró AM, Ordejón P, Soler JM, Artacho E (2000) Phys Rev Lett 85:4992

    Article  Google Scholar 

  9. Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105

    Article  CAS  Google Scholar 

  10. Storm AJ, van Noort J, De Vries S, Dekker C (2001) Appl Phys Lett 79:3881

    Article  CAS  Google Scholar 

  11. Hwang JS, Kong KJ, Ahn D, Lee GS, Ahn DJ, Hwang SW (2002) Appl Phys Lett 1134:81

    Google Scholar 

  12. Zhang Y, Austin RH, Kraeft J, Cox EC, Ong NP (2002) Phys Rev Lett 89:198102

    Article  CAS  Google Scholar 

  13. Porah D, Bezrydin A, de Vries S, Dekker C (2000) Nature 403:635

    Article  Google Scholar 

  14. Yang Y, Yin P, Li X, Yan Y (2005) Appl Phys Lett 203901

    Google Scholar 

  15. Fink H, Schönenberger C (1999) Nature 398:407

    Article  CAS  Google Scholar 

  16. Yu Kasumov A, Kociak M, Guéron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:5502

    Article  Google Scholar 

  17. Wang L, Yoshida J, Ogata N, Sasaki S, Kajiyama T (2001) Chem Mater 13(4):1273

    Article  CAS  Google Scholar 

  18. Zhang G, Wang L, Yoshida J, Ogata N (2001) In: Wang Q, Lee T (eds) SPIE Proceedings of Optoelectronic, Materials and Devices for Communications, vol 337, p 4580

    Google Scholar 

  19. Heckman EM, Hagen JA, Yaney PP, Grote JG, Hopkins FK (2005) Appl Phys Lett 87:211115

    Article  Google Scholar 

  20. Ghirlando R, Wachtel EJ, Arad T, Minsky A (1992) Biochem 31:7110

    Article  CAS  Google Scholar 

  21. Tanaka K, Okahata Y (1996) J Am Chem Soc 118:10679

    Article  CAS  Google Scholar 

  22. Kimura H, Machida S, Horie K, Okahata Y (1998) Polym J 30:708

    Article  CAS  Google Scholar 

  23. Grote J, Ogata N, Hagen J, Heckman E, Curley M, Yaney P, Stone M, Diggs D, Nelson R, Zetts J, Hopkins F, Dalton L (2003) In: Yates A, Belfield K, Kajzar F, Lawson C (eds) SPIE Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics, vol 53, p 5221

    Google Scholar 

  24. Heckman EM, Yaney PP, Grote JG, Hopkins F, Tomczak MM (2006) Proc SPIE 6117:61170K

    Article  Google Scholar 

  25. Grote JG et al. (2005) Proc SPIE 5934:593406

    Article  Google Scholar 

  26. Subramaniam G, Heckman E, Grote J, Hopkins F (2005) IEEE Microwave Wireless Comput Lett 15:232

    Article  Google Scholar 

  27. Hagen JA, Li WX, Grote JG, Steckl AJ (2006) Appl Phys Lett 88:171109

    Article  Google Scholar 

  28. For a review article on OFET: Singh ThB, Sariciftci NS (2006) Annu Rev Mater Res 36:199

    Article  Google Scholar 

  29. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W (2002) J Appl Phys 92:5259

    Article  CAS  Google Scholar 

  30. Parashkov R, Becker E, Ginev G, Riedl T, Johannes HH, Kowalsky W (2006) J Appl Phys 95:1594

    Article  Google Scholar 

  31. Park J, Park SY, Shim S, Kang H, Lee HH (2004) Appl Phys Lett 85:3283

    Article  CAS  Google Scholar 

  32. Schroeder R, Majewski LA, Grell M (2003) Appl Phys Lett 83:3201

    Article  CAS  Google Scholar 

  33. Knipp D, Street RA, Krusor B, Ho J, Apte RB (2002) Mater Res Soc Symp Proc 708:BB 10

    Google Scholar 

  34. Schroeder R, Majewski LA, Grell M (2004) Adv Mater 16:633

    Article  CAS  Google Scholar 

  35. Singh ThB, Marjanovi N, Matt GJ, Sariciftci NS, Schwödiauer R, Bauer S (2004) Appl Phys Lett 85:5409

    Article  Google Scholar 

  36. Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, De Leeuw DM (2005) Nat Mater 4:243

    Article  CAS  Google Scholar 

  37. Singh ThB, Marjanovi N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S (2005) J Appl Phys 97:083714

    Article  Google Scholar 

  38. Singh ThB, Sariciftci NS, Grote J, Hopkins F (2006) J Appl Phys 100:024514

    Article  Google Scholar 

  39. Stadler P, Oppelt K, Singh B, Grote J, Schwödiauer R, Bauer S, Piglmayer-Brezina H, Bäuerle D, Sariciftci NS (2007) Org Electron 8:648

    Article  CAS  Google Scholar 

  40. Goldmann C, Krellner C, Pernstich KP, Haas S, Gundlach DJ, Batlogg B (2006) J Appl Phys 99:034507

    Article  Google Scholar 

  41. Katz HE, Hong XM, Dodabalapur A, Sarpeshkar R J Appl Phys (2002) 91:1572

    Google Scholar 

  42. Veres J, Ogier S, Lloyd G, de Leeuw D (2004) Chem Mater 16:4543

    Article  CAS  Google Scholar 

  43. Street R, Salleo A, Chabinyc M (2003) Phys Rev B 68:085316

    Article  Google Scholar 

  44. Kremmer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Spinger, Berlin Heidelberg New York, p 87

    Google Scholar 

  45. Stadler P (2007) Master thesis, Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University of Linz, Austria

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the work done by Professor Naoya Ogata, CIST in making salmon DNA available for our BioFET research. We also wish to acknowledge the support of the Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RX),the Air Force Office of Scientific Research (AFOSR) and the European Office of Aerospace Research & Development (EOARD) The authors would also like to thank Dr. Joshua Hagen for his technical assistance and fruitful discussions. Excellent work done by DI P. Stadler is also acknowledged. This work is also supported by Austrian Funds for Advancement of Science FWF (NFN S9711-N08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thokchom Birendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, T.B., Sariciftci, N.S., Grote, J.G. (2009). Bio-Organic Optoelectronic Devices Using DNA. In: Grasser, T., Meller, G., Li, L. (eds) Organic Electronics. Advances in Polymer Science, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_6

Download citation

Publish with us

Policies and ethics