Skip to main content

Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds

  • Chapter
  • First Online:
Chitosan for Biomaterials II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 244))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutta J, Dutta PK, Rinki K et al (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, Trivandrum

    Google Scholar 

  2. Malafaya PB, Pedro AJ, Peterbauer A et al (2005) Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Medicine 16:1077–1085

    Article  CAS  Google Scholar 

  3. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344

    Article  CAS  Google Scholar 

  4. Wang M, Chen LJ, Weng J et al (2001) Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. J Mater Sci Mater Med 12:855–860

    Article  CAS  Google Scholar 

  5. Hoerstrup SP, Lu L, Lysaght MJ et al (2004) Tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ et al (eds) Biomaterial science. Elsevier Academic, San Diego

    Google Scholar 

  6. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  7. Ehrenfreund-Kleinman T, Golenser J, Domb AJ (2006) Polysachharide scaffolds for tissue engineering. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. CRC, Boca Raton

    Google Scholar 

  8. Jagur-Grodzinski J (2003) Biomedical applications of polymers. e-polymers 012

    Google Scholar 

  9. Thein-Han WW, Kitiyanant Y, Mishra RDK (2008) Chitosan as scaffold matrix for tissue engineering. Mater Sci Technol 24:1062–1075

    Article  CAS  Google Scholar 

  10. Duarte ARC, Mano JF, Reis RL (2009) Perspectives on supercritical fluid technology for 3D tissue engineering scaffold applications. J Bioact Compat Polym 24:385–400

    Article  CAS  Google Scholar 

  11. Whang K, Healy E, Elenz DR (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5:35–51

    Article  CAS  Google Scholar 

  12. Verma P, Verma V, Ray AR (2005) Chitin and chitosan: chitosan as tissue engineering scaffolds. In: Dutta PK (ed) Chitin and chitosan: opportunities and challenges. SSM International Publication, Midnapore, West Bengal

    Google Scholar 

  13. O'Brien FJ, Harley BA, Yannas IV et al (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086

    Article  CAS  Google Scholar 

  14. Rinki K, Dutta J, Dutta PK (2007) Chitosan based scaffolds for tissue engineering applications. Asian Chitin J 3:69–78

    Google Scholar 

  15. Yang S, Leong K-F, Du Z et al (2001) The design of scaffolds for use in tissue engineering Part I Traditional factors. Tissue Eng 7:679–689

    Article  CAS  Google Scholar 

  16. Chang BS, Lee C-K, Hong K-S et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21:1291–1298

    Article  CAS  Google Scholar 

  17. Shor L, Guceri S, Wen X et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28:5291–5297

    Article  CAS  Google Scholar 

  18. Wu L, Jing D, Ding JA (2006) “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 27:185–191

    Article  CAS  Google Scholar 

  19. Ingber D, Karp S, Plopper G et al (1993) Mechanochemical transduction across extracellular matrix and through the cytoskeleton. In: Frangos JA, Ives CL (eds) Physical forces and the mammalian cell. Academic, San Diego

    Google Scholar 

  20. Tessmar JKV, Holland TA, Mikos AG (2006) Salt leaching for polymer scaffolds: laboratory-scale manufacture of cell carriers. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. CRC, Boca Raton

    Google Scholar 

  21. Murphy WL, Dennis RG, Kileny JL et al (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng 8:43–52

    Article  CAS  Google Scholar 

  22. Wang AJ, Cao WL, Gong K et al (2006) Controlling morphology and porosity of 3-D chitosan scaffolds produced by thermally induced phase separation technique. Asian Chitin J 2:69–78

    Google Scholar 

  23. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  CAS  Google Scholar 

  24. Sahai N (2010) Characterization of porous tissue scaffolds using computer aided tissue engineering. M Tech dissertation submitted to MNNIT, Allahabad

    Google Scholar 

  25. Partap S, Hebb AK, Rehman I et al (2007) Formation of porous natural-synthetic polymer composites using emulsion templating and supercritical fluid assisted impregnation. Polym Bull 58:849–860

    Article  CAS  Google Scholar 

  26. Hu X, Lessery AJ (2006) Solid-state processing of polymer in the presence of supercritical carbon Dioxide. J Cell Plast 42:517–527

    Article  CAS  Google Scholar 

  27. Rinki K, Dutta PK, Hunt AJ et al (2011) Chitosan aerogel exhibiting high surface area for biomedical applications: preparation, characterization and antibacterial study. Int J Polym Mater Article ID 553849 (GPOM-2010–0362.R1)

    Google Scholar 

  28. Sachlos E, Wahl DA, Triffitt JT et al (2008) The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Acta Biomater 4:1322–1331

    Article  CAS  Google Scholar 

  29. Rinki K, Dutta PK (2008) Preparation of genipin crosslinked chitosan scaffolds using supercritical carbon dioxide (sc. CO2). Asian Chitin J 4:43–48

    Google Scholar 

  30. Rinki K, Dutta PK, Hunt AJ et al (2009) Preparation of chitosan scaffolds using supercritical carbon dioxide. Macromol Symp 277:36–42

    Article  CAS  Google Scholar 

  31. Wei X, Wang K, Chen J (2011) The functional inorganic composites. Prog Chem 23:42–52

    Google Scholar 

  32. Rinki K, Shipra T, Dutta PK et al (2009) Direct chitosan scaffold formation via chitin whiskers by a supercritical carbon dioxide method: a green approach. J Mater Chem 19:8651–8655

    Article  CAS  Google Scholar 

  33. Rinki K, Dutta PK (2010) Chitosan based scaffolds by lyophilization and sc. CO2 assisted methods for tissue engineering applications: a benign green chemistry approach. J Macromol Sci Pure Appl Chem A47:429–434

    Google Scholar 

  34. Rinki K, Dutta PK (2010) Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. Int J Biol Macromol 46:261–266

    Article  CAS  Google Scholar 

  35. Jayakumar R, Prabaharan M, Nair SV et al (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  CAS  Google Scholar 

  36. Li W-J, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  37. Mo X, Chen Z, Hans JW (2007) Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering. Front Mater Sci China 1:20–23

    Article  Google Scholar 

  38. Kharande TS, Agrawal CM (2008) Functions and requirements of synthetic scaffolds in tissue engineering. In: Laurencin CT, Nair LS (eds) Nanotechnology and tissue engineering: the scaffold. CRC, Boca Raton

    Google Scholar 

  39. Kang YM, Lee BN, Ko JH et al (2010) In vivo biocompatibility study of electrospun chitosan microfiber for tissue engineering. Int J Mol Sci 11:4140–4148

    Article  CAS  Google Scholar 

  40. Pillai CKS, Chandra PS (2009) Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif Organs 22:175–197

    Google Scholar 

  41. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    Article  CAS  Google Scholar 

  42. Jia Y-T, Gong J, Xiao-Hua Gu et al (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67:403–409

    Article  CAS  Google Scholar 

  43. Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022

    Article  CAS  Google Scholar 

  44. Chupa JM, Foster AM, Sumner SR et al (2000) Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 21:2315–2322

    Article  CAS  Google Scholar 

  45. Dutta PK, Tripathi S, Mehrotra GK et al (2009) Perspectives for chitosan based antimicrobial films for food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  46. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: Chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  47. Dutta PK, Dutta J, Chattopadhyaya MC et al (2004) Chitin and chitosan: novel biomaterials waiting for future developments. J Polym Mater 21:321–334

    CAS  Google Scholar 

  48. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering – an overview. Mar Drugs 8:2252–2266

    Article  CAS  Google Scholar 

  49. Muzzarelli RAA (1993) Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr Polym 20:7–16

    Article  CAS  Google Scholar 

  50. Archana D, Dutta J, Dutta PK (2010) Chitosan-pectin-titanium dioxide nano-composite film: an investigation for wound healing applications. Asian Chitin J 6:45–46

    Google Scholar 

  51. Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng Res 34:147–230

    Article  Google Scholar 

  52. Hasirci V, Lewandrowski K, Gresser JD et al (2001) Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol 86:135–150

    Article  CAS  Google Scholar 

  53. Marler JJ, Upton J, Langer R et al (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33:165–182

    Article  CAS  Google Scholar 

  54. Muzzarelli C, Muzzarelli RAA (2002) Natural and artificial chitosan-inorganic composites. J Inorg Biochem 92:89–94

    Article  CAS  Google Scholar 

  55. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  56. Mi FL, Shyu SS, Wu YB et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  Google Scholar 

  57. Jayakumar R, Divyarani VV, Shalumon KT et al (2009) Development of novel α- and β-chitin hydrogel membranes for tissue engineering applications. Asian Chitin J 5:63–70

    Google Scholar 

  58. Jiang T, Nair LS, Laurencen CT (2006) Chitosan composites for tissue engineering: bone tissue engineering scaffolds. Asian Chitin J 2:1–10

    Google Scholar 

  59. Li J, Pan J, Zhang L, Yu Y (2003) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 24:2317–2322

    Article  CAS  Google Scholar 

  60. Enescu D, Olteanu CE (2008) Functional chitosan and its use in pharmaceutical, biomedical, and biotechnological research. Chem Eng Commun 195:1269–1291

    Article  CAS  Google Scholar 

  61. Wu T, Zivanovic S, Draughon FA et al (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem 53:3888–3894

    Article  CAS  Google Scholar 

  62. Dutta PK, Singh J (2008) Conformational study of chitosan: a review. Proceedings of the National Academy of Sciences India Part IV LXXVIII:255–270

    Google Scholar 

  63. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575

    Article  CAS  Google Scholar 

  64. Shigemasa Y, Saito K, Sashiwa H et al (1994) Enzymatic degradation of chitins and partially deacetylated chitins. Int J Biol Macromol 16:43–49

    Article  CAS  Google Scholar 

  65. Hutadilok N, Mochimasu T, Hisamori H et al (1995) The effect of N-substitution on the hydrolysis of chitosan by an endo-chitosanase. Carbohydr Res 268:143–149

    Article  CAS  Google Scholar 

  66. Nordtveit RJ, Varum KM, Smidsrod O (1996) The effect of N-substitution on the hydrolysis of chitosan by an endo-chitosanase. Carbohydr Polym 29:163–167

    Article  CAS  Google Scholar 

  67. Varum KM, Myhr MM, Hjerde RJ et al (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299:99–101

    Article  CAS  Google Scholar 

  68. Zhang K, Qian Y, Wang H et al (2010) Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res 95A:870–881

    Article  CAS  Google Scholar 

  69. Sathirakul K, How NC, Stevens WF et al (1996) Application of chitin and chitosan bandages for wound-healing. In: Domard A, Jeauniaux C, Muzzarelli R, Roberts G (eds) Proceedings of the first international conference of the European Chitin Society. Advances in chitin science, vol 1. Jacques Andre Publisher, Lyon

    Google Scholar 

  70. Hidaka Y, Ito M, Mori K et al (1999) Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res 46:418–423

    Article  CAS  Google Scholar 

  71. Hsu S, Whu SW, Tsai C et al (2004) Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J Polym Res 11:141–147

    Article  CAS  Google Scholar 

  72. Chatelet C, Damour O, Domard A (2001) Infuence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268

    Article  CAS  Google Scholar 

  73. Kim I-Y, Seo S-J, Moon H-S et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  Google Scholar 

  74. Chen GP, Sato T, Ohgushi H et al (2005) Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials 26:2559–2566

    Article  CAS  Google Scholar 

  75. Ma L, Gao CY, Mao ZW et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    Article  CAS  Google Scholar 

  76. Khnor E, Lim L (2003) Implantated applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  77. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52:105–115

    Article  CAS  Google Scholar 

  78. Radhika M, Mary B, Sehgal PK (1999) Cellular proliferation on desamidated collagen matrices. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124:131–139

    Article  CAS  Google Scholar 

  79. Archana D, Dutta J, Dutta PK (2010) Synthesis, characterization and bioactivity with improved antibacterial effect of chitosan-pectin-titanium dioxide ternary film for biomedical applications. Asian Chitin J 6:26

    Google Scholar 

  80. Adekogbe I, Ghanem A (2005) Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 26:7241–7250

    Article  CAS  Google Scholar 

  81. Liu H, Fan H, Cui Y et al (2007) Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on a chitosan-gelatin scaffold. Biomacromolecules 8:1446–1455

    Article  CAS  Google Scholar 

  82. Powell HM, Boyce ST (2006) EDC cross-linking improves skin substitute strength and stability. Biomaterials 27:5821–5827

    Article  CAS  Google Scholar 

  83. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res 94B:264–272

    CAS  Google Scholar 

  84. Lu G, Wang G, Sheng B et al (2008) Bimodal carboxymethyl chitosan/collagen nanofiber composite scaffolds for bone tissue engineering. Asian Chitin J 4:49–58

    Google Scholar 

  85. Service RF (2000) Tissue engineers build new bone. Science 289:1498–1500

    Article  CAS  Google Scholar 

  86. Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  CAS  Google Scholar 

  87. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  88. Martins AM, Alves CM, Kasper FK et al (2010) Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J Mater Chem 20:1638–1645

    Article  CAS  Google Scholar 

  89. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  Google Scholar 

  90. Manjubala I, Ponomarev I, Jandt KD et al (2004) Adhesion and proliferation of osteoblastic cells seeded on chitosan-hydroxyapatite porous scaffold. Eur Cell Mater 7:64

    Google Scholar 

  91. Zhang Y, Ni M, Zhang M et al (2003) Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng 9:337–345

    Article  CAS  Google Scholar 

  92. Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903

    Article  CAS  Google Scholar 

  93. Xu HHK, Simon CG Jr (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348

    Article  CAS  Google Scholar 

  94. Kuo Y, Lin C (2006) Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes. Biotechnol Bioeng 95:132–144

    Article  CAS  Google Scholar 

  95. Yan LP, Wang YJ, Wu G et al (2010) Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res 95A:465–475

    Article  CAS  Google Scholar 

  96. Kong L, Gao Y, Lu G et al (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179

    Article  CAS  Google Scholar 

  97. Sailaja GS, Ramesh P, Kumary TV et al (2006) Human osteosarcoma cell adhesion behaviour on hydroxyapatite integrated chitosan–poly(acrylic acid) polyelectrolyte complex. Acta Biomater 2:651–657

    Article  CAS  Google Scholar 

  98. Manjubala I, Ponomarev I, Wilke I et al (2008) Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. J Biomed Mater Res Appl Biomater 84B:7–16

    Article  CAS  Google Scholar 

  99. Sendemir-Urkmez A, Jamison RD (2006) The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res 81A:624–633

    Article  CAS  Google Scholar 

  100. Lee E, Shin D, Kim H et al (2009) Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30:743–750

    Article  CAS  Google Scholar 

  101. Lee JE, Jeong MH, Ahn HJ et al (2005) Evaluation of chondrogenesis in collagen/chitosan/glycosaminoglycan scaffolds for cartilage tissue engineering. Tissue Eng Regenerative Medicine 2:41–49

    Google Scholar 

  102. Yamane S, Iwasaki N, Majima T et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619

    Article  CAS  Google Scholar 

  103. Chen YL, Lee HP, Chan HY et al (2007) Composite chondroitin-6-sulfate/dermatan sulphate/chitosan scaffolds for cartilage tissue engineering. Biomaterials 28:2294–2305

    Article  CAS  Google Scholar 

  104. Wu H, Wan Y, Cao X et al (2008) Proliferation of chondrocytes on porous poly(DL-lactide)/chitosan scaffolds. Acta Biomater 4:76–87

    Article  CAS  Google Scholar 

  105. Lao L, Tan H, Wang Y et al (2008) Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids Surf B Biointerfaces 66:218–225

    Article  CAS  Google Scholar 

  106. Tan H, Wu J, Lao L (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337

    Article  CAS  Google Scholar 

  107. Putnam AJ, Mooney DJ (1996) Tissue engineering using synthetic extracellular matrices. Nat Med 2:824–826

    Article  CAS  Google Scholar 

  108. Smentana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050

    Article  Google Scholar 

  109. Cohen S, Glicklis R, Shapiro L et al (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67:344–353

    Article  Google Scholar 

  110. Yang J, Chung TW, Nagaoka M et al (2001) Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnol Lett 23:1385–1389

    Article  CAS  Google Scholar 

  111. Chung TW, Yang J, Akaike T et al (2002) Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23:2827–2834

    Article  CAS  Google Scholar 

  112. Seglen PO (1972) Preparation of rat liver cells. Exp Cell Res 74:450–454

    Article  CAS  Google Scholar 

  113. Li J, Pan J, Zhang L et al (2003) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 24:2317–2322

    Article  CAS  Google Scholar 

  114. Park IK, Yang J, Jeong HW et al (2003) Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24:2331–2337

    Article  CAS  Google Scholar 

  115. Wang XH, Li DP, Wang WJ et al (2003) Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24:3213–3220

    Article  CAS  Google Scholar 

  116. Jiankang H, Dichen L, Yaxiong L et al (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461

    Article  CAS  Google Scholar 

  117. Feng ZQ, Chu X, Huang NP et al (2009) The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 30:2753–2763

    Article  CAS  Google Scholar 

  118. Sivakumar R, Rajesh R, Buddhan S et al (2007) Antilipidemic effect of chitosan against experimentally induced myocardial infarction in rats. J Cell Animal Biol 1:71–77

    Google Scholar 

  119. Wei HJ, Chen CH, Lee WY et al (2008) Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 29:3547–3556

    Article  CAS  Google Scholar 

  120. Perin EC, Dohmann HF, Borojevic R et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  Google Scholar 

  121. Park H, Radisic M, Lim JO et al (2005) A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol – Animal 41:188–196

    Article  CAS  Google Scholar 

  122. Freed LE, Vunjak-Novakovic G (2000) Tissue engineering bioreactors. In: Lanza RP, Langer R, Vacanti JP (eds) Principles of tissue engineering, 2nd edn. Academic, San Diego

    Google Scholar 

  123. Radisic M, Obradovic B, Vunjak-Novakovic G (2006) Functional tissue engineering of cartilage and myocardium: bioreactor aspects. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. CRC, Boca Raton

    Google Scholar 

  124. Birla RK, Dow DE, Huang YC et al (2008) Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro. In Vitro Cell Dev Biol – Animal 44:340–350

    Article  Google Scholar 

  125. Blan NR, Birla RK (2008) Design and fabrication of heart muscle using scaffold-based tissue engineering. J Biomed Mater Res 86A:195–208

    Article  CAS  Google Scholar 

  126. Cuy JL, Beckstead BL, Brown CD et al (2003) Adhesive protein interactions with chitosan: consequences for valve tissue-engineering. J Biomed Mater Res 67A:538–547

    Article  CAS  Google Scholar 

  127. Liu L, Guo S, Chang J et al (2008) Surface Modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility. J Biomed Mater Res Appl Biomater 87B:244–250

    Article  CAS  Google Scholar 

  128. Zhu C, Fan D, Duan Z et al (2009) Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J Biomed Mater Res 89A:829–840

    Article  CAS  Google Scholar 

  129. Zhang L, Ao Q, Wang A et al (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res 77A:277–284

    Article  CAS  Google Scholar 

  130. He Q, Ao Q, Gong K et al (2010) Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering. Biomed Mater 5:055001

    Article  CAS  Google Scholar 

  131. Kalayoglu MV. In search of the artificial cornea: recent developments in keratoprostheses. http://www.medcompare.com/spotlight.asp?spotlightid=159

  132. Wang Y, Guo L, Ren L et al (2009) A study on the performance of hyaluronic acid immobilized chitosan film. Biomed Mater 4:1–7

    CAS  Google Scholar 

  133. Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619

    Article  CAS  Google Scholar 

  134. Du LQ, Wu XY, Li MC et al (2008) Effect of different biomedical membranes on alkali-burned cornea. Ophthalmic Res 40:282–290

    Article  CAS  Google Scholar 

  135. Chen J, Li Q, Xu J et al (2005) Study on biocompatibility of complexes of collagen–chitosan–sodium hyaluronate and cornea. Artif Organs 29:104–113

    Article  CAS  Google Scholar 

  136. Rafat M, Li F, Fagerholm P et al (2008) PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972

    Article  CAS  Google Scholar 

  137. Zielinski BA, Aebischer P (1991) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15:1049–1056

    Article  Google Scholar 

  138. Dillon GP, Yu X, Sridharan A et al (1998) The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Edn 9:1049–1069

    Article  CAS  Google Scholar 

  139. Dillon GP, Yu X, Bellamkonda RV (2000) The polarity and magnitude of ambient charge influences three-dimensional neurite extension from DRGs. J Biomed Mater Res 51A:510–519

    Article  Google Scholar 

  140. Gong H, Zhong Y, Li J et al (2000) Studies on nerve cell affinity of chitosan-derived materials. J Biomed Mater Res 52A:285–295

    Google Scholar 

  141. Cheng M, Cao W, Gao Y et al (2003) Studies on nerve cell affinity of biodegradable modified chitosan films. J Biomater Sci Polym Edn 14:1155–1167

    Article  CAS  Google Scholar 

  142. Midha R, Shoichet MS, Dalton PD et al (2001) Tissue engineered alternatives to nerve transplantation for repair of peripheral nervous system injuries. Transplant Proc 33:612

    Article  CAS  Google Scholar 

  143. Keilhoff G, Stang F, Wolf G et al (2003) Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials 24:2779–2787

    Article  CAS  Google Scholar 

  144. Ashtona RS, Banerjee A, Punyania S et al (2007) Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28:5518–5525

    Article  CAS  Google Scholar 

  145. Scanga VI, Goraltchouk A, Nussaiba N et al (2010) Biomaterials for neural-tissue engineering- chitosan supports the survival, migration, and differentiation of adult-derived neural stem and progenitor cells. Can J Chem 88:277–287

    Article  CAS  Google Scholar 

  146. Frier T, Montenegro KHS et al (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632

    Article  CAS  Google Scholar 

  147. Thein-Han WW, Kitiyanant Y (2007) Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture: an approach to tissue engineering. J Biomed Mater Res Appl Biomater 80B:92–101

    Article  CAS  Google Scholar 

  148. Prabhakaran MP, Venugopal JR, Chyan TT et al (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng 14:1787–1797

    Article  CAS  Google Scholar 

  149. Wang AJ, Cao WL, Gong K et al (2006) Development of porous chitosan tubular scaffolds for tissue engineering applications. Asian Chitin J 2:53–60

    Google Scholar 

  150. Frier T, Koha HS, Kazaziana K et al (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26:5872–5878

    Article  CAS  Google Scholar 

  151. Xiangmei W, Jing Z, Hao C et al (2009) Preparation and characterization of collagen-based composite conduit for peripheral nerve regeneration. J Appl Polymer Sci 112:3652–3662

    Article  CAS  Google Scholar 

  152. Ishikawa N, Suzuki Y, Dezawa M et al (2009) Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells. J Biomed mater Res 89A:1118–1124

    Article  CAS  Google Scholar 

  153. Ishikawa N, Suzuki Y, Ohta M et al (2007) Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res 83A:33–40

    Article  CAS  Google Scholar 

  154. Peng L, Cheng XR, Wang JW et al (2006) Preparation and evaluation of porous chitosan/collagen scaffolds for periodontal tissue engineering. J Bioactive Compatible Polym 21:207–220

    Article  CAS  Google Scholar 

  155. Zhang Y, Song J, Shi B et al (2007) Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials 28:4635–4642

    Article  CAS  Google Scholar 

  156. Shao X, Hunter CJ (2007) Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrous cells. J Biomed Mater Res 82A:701–710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledged the financial assistance to KR in the form of Institute Research Fellowship from MNNIT, Allahabad and research funding to PKD from UGC, New Delhi. The RSC (London) -Research Fund Grant Award-2009 to PKD is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutta, P.K., Rinki, K., Dutta, J. (2011). Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials II. Advances in Polymer Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_112

Download citation

Publish with us

Policies and ethics