Skip to main content

The Effect of Polyglycols on the Fatigue Crack Growth of Silica-Filled Natural Rubber

  • Chapter
  • First Online:
Fatigue Crack Growth in Rubber Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 286))

Abstract

Polyglycols are mainly used as plasticizers to enhance the incorporation of polar fillers in non-polar elastomers. Polyglycols can help to prevent the self-agglomeration of the filler particles and thereby improve their dispersion in the rubber matrix. It can also prevent undesired chemical reactions of the polar components in the curing system with the surface of the filler particles. Therefore, it is expected that polyglycols can play a crucial role as plasticizer and coupling agent in a silica-filled rubber compound. In this work, polyethylene glycol (PEG) and polypropylene glycol (PPG) in two different concentrations were applied in a silica-filled natural rubber (NR). Their effects are compared with the influence of the coupling agent bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), which is widely used in rubber industry as silica coupling agent. Firstly, the cure characteristics and fundamental mechanical properties have been studied, whereas the ability of polyglycols to improve cure efficiency as well as filler-elastomer interactions has been confirmed. Moreover, polyglycols are improving the fundamental mechanical properties in general, whereas the polyglycols-treated silica-filled NR composites show lower tensile strength and modulus with a higher elongation at break compared to the TESPT-treated silica-filled NR. Finally, the effect of polyglycols on fatigue crack growth (FCG) resistance was investigated using a Tear and Fatigue Analyzer (TFA©, Coesfeld GmbH & Co. KG, Germany). It has been found that 2 phr of PEG leads to a higher improvement of FCG resistance in comparison with the corresponding content of TESPT. However, 4 phr of polyglycols significantly decreases this property again. Moreover, the application of PPG generally leads to decreasing FCG resistance. As conclusion, it was stated that the polyglycols act as agent leading to significant improvement of fundamental mechanical behaviour in general as well as to improvement of FCG behaviour using specific polyglycol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gheller Jr J, Ellwanger M, Oliveira V (2015) Polymer-filler interactions in a tire compound reinforced with silica. J Elastom Plast 48:217–226

    Google Scholar 

  2. Zafarmehrabian R, Gangali ST, Ghoreishy MHR, Davallu M (2012) The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. E-J Chem 9:1102–1112

    CAS  Google Scholar 

  3. Kim KJ, White JL (2000) Breakdown of silica agglomerates and other particles during mixing in an internal mixer and their processing character. J Ind Eng Chem 6:262–269

    Google Scholar 

  4. Saeed F, Ansarifar A, Ellis RJ, Haile-Meskel Y, Irfan MS (2012) Two advanced styrene-butadiene/polybutadiene rubber blends filled with silanized silica nanofiller for potential use in passenger car tire tread compound. J Appl Polym Sci 123:1518–1529

    CAS  Google Scholar 

  5. Liu X, Zhao SH, Zhang XY, Li XL, Bai Y (2014) Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. J Appl Polym Sci 55:1964–1976

    CAS  Google Scholar 

  6. Limper A (2012) Mixing of rubber compounds. Hanser Publishers, Munich. E-book ISBN 987-3-446-42865-2

    Google Scholar 

  7. Reuvekamp LAEM, ten Brinke JW, Van Swaaij PJ, Noordermeer JWM (2002) Effects of mixing conditions-reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber. Kaut Gummi Kunst 55:41–47

    CAS  Google Scholar 

  8. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2012) Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rubber Chem Technol 85:277–294

    CAS  Google Scholar 

  9. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2012) Factors influencing the flocculation process in silica-reinforced natural rubber compounds. In: Paper presented at MAMIP 2012, Penang, Malaysia, pp 980–989

    Google Scholar 

  10. Noriman NZ, Ismail H (2011) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: the effects of carbon black/silica (CB/Sil) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124:19–27

    Google Scholar 

  11. Ghosh P, Stocek R, Gehde M, Mukhopadhyay R, Krishnakumar R (2014) Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds. Int J Fract 188:9–21

    CAS  Google Scholar 

  12. Ghosh P, Mukhopadhyay R, Stocek R (2016) Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue analyser. Kaut Gummi Kunst 69:53–55

    CAS  Google Scholar 

  13. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM (2014) Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. Eur Polym J 51:69–79

    CAS  Google Scholar 

  14. Zheng J, Ye X, Han D, Zhao S, Wu X, Wu Y, Dong D, Wang Y, Zhang L (2017) Silica modified by alcohol polyoxyethylene ether and silane coupling agent together to achieve high performance rubber composites using the latex compounding method. Polymers 10(1):1

    PubMed Central  Google Scholar 

  15. Laboulfie F, Hémati M, Lamure A, Diguet S (2013) Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technol 238:14–19

    CAS  Google Scholar 

  16. Gonzalez J, Valentin JL, Arroyo M, Saalwächter K, Lopez-Manchado M (2008) Natural rubber/clay nanocomposites: influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber. Eur Polym J 44:3493–3500

    Google Scholar 

  17. Bachmann JH, Sellers JW, Wagner MP (1959) Fine particle reinforcing silicas and silicates in elastomers. Rubber Chem Technol 32:1286–1391

    Google Scholar 

  18. Sattayanurak S, Noordermeer JWM, Sahakaro K, Kaewsakul W, Dierkes WK, Blume A (2019) Silica-reinforced natural rubber: synergistic effects by addition of small amounts of secondary fillers to silica-reinforced natural rubber tire tread compounds. Adv Mater Sci Eng 2019:1–8

    Google Scholar 

  19. Brinke JWT, Debnath SC, Reuvekamp LAEM, Noordermeer JWM (2003) Mechanistic aspects of the role of coupling agents in silica-rubber composites. Compos Sci Technol 63:1165–1174

    Google Scholar 

  20. Luginsland HD, Kalscheuren H (2000) Reactivity of the sulfur chains of the tetrasulfane silane Si 69 and the disulfane dilane TESPD. Kaut Gummi Kunst 53:10

    CAS  Google Scholar 

  21. Yao H, Weng G, Liu Y, Fu K, Chang A, Chen ZR (2015) Effect of silane coupling agent on the fatigue crack propagation of silica-filled natural rubber. J Appl Polym Sci 132:20

    Google Scholar 

  22. Bin D, Chang L, You-Ping W (2014) Fracture and fatigue of silica/carbon black/natural rubber composites. Polym Test 38:40–45

    Google Scholar 

  23. Saeed F (2011) Crack growth under dynamic loading in silanised silica filled rubber vulcanisates. A Doctoral thesis, Loughborough University, United Kingdom

    Google Scholar 

  24. Guy L, Daudey S, Cochet P, Bomal Y (2009) New insights in the dynamic properties of precipitated silica filled rubber using a new high surface silica. Kaut Gummi Kunst 63:383–391

    Google Scholar 

  25. Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10:291–318

    CAS  Google Scholar 

  26. Neubert D, Saunders DW (1958) Some observations of the permanent set of cross-linked natural rubber samples after heating in a state of pure shear. Rheol Acta 1(2–3):151–157

    CAS  Google Scholar 

  27. Yanyo LC (1989) Effect of crosslink type on fracture of natural rubber vulcanizates. Int J Fract 39:103–110

    CAS  Google Scholar 

  28. South JT, Case SW, Reifsnider KL (2002) Crack growth of natural rubber using a modified double cantilever beam. Mech Mater 34:451–458

    Google Scholar 

  29. Persson BNJ, Albohr O, Heinrich G, Ueba H (2005) Crack propagation in rubber-like materials. J Phys Condens Matter 17:R1071–R1142

    CAS  Google Scholar 

  30. Feichter C, Major Z, Lang RW (2006) Experimental determination of fatigue crack growth behavior and surface strain distribution of ‘faint-waist pure shear’ specimens with different crack tip RADII. Rubber Chem Technol 79(4):712–733

    CAS  Google Scholar 

  31. Major Z, Lang RW (2010) Characterization of the fracture behavior of NBR and FKM grade elastomers for oilfield applications. Eng Fail Anal 17:701–711

    CAS  Google Scholar 

  32. Stadlbauer F, Koch T, Planitzer F, Fidi W, Archodoulaki V-M (2013) Setup for evaluation of fatigue crack growth in rubber: pure shear sample geometries tested in tension-compression mode. Polym Test 32:1045–1051

    CAS  Google Scholar 

  33. Rooj S, Das A, Morozov IA, Stöckelhuber KW, Stocek R, Heinrich G (2013) Influence of “expanded clay” on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Compos Sci Technol 76:61–68

    CAS  Google Scholar 

  34. Hintze C, Stoček R, Horst T, Jurk R, Wiessner S, Heinrich G (2014) Dynamic behavior of short aramid fiber-filled elastomer composites. Polym Eng Sci 54:2958–2964

    CAS  Google Scholar 

  35. Stoček R, Kratina O, Ghosh P, Maláč J, Mukhopadhyay R (2017) Influence of thermal ageing process on the crack propagation of rubber used for tire application. In: Springer series in materials science, vol 247. Springer, Cham, pp 351–364

    Google Scholar 

  36. Stoček R, Horst T, Reincke K (2017) Tearing energy as fracture mechanical quantity for elastomers. In: Stöckelhuber KW, Das A, Klüppel M (eds) Designing of elastomer nanocomposites: from theory to applications. Advances in polymer science, vol 275. Springer, New York, pp 361–398

    Google Scholar 

  37. Stoček R, Kipscholl R (2017) Influence of test specimen thickness on the fatigue crack growth of rubber. In: Constitutive models for rubber X – proceedings of the 10th European conference on constitutive models for rubber. CRC Press, Balkema, pp 347–350

    Google Scholar 

  38. Stoček R, Stěnička M, Zádrapa P (2020) Future trends in predicting the complex fracture behaviour of rubber materials. Continuum Mech Thermodyn. https://doi.org/10.1007/s00161-020-00887-z

  39. Stoček R, Heinrich G, Gehde M, Kipscholl R (2013) Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: Grellmann W et al (eds) Fracture mechanics and statistical mechanics, LNACM 70, pp 269–301

    Google Scholar 

  40. Stocek R, Heinrich G, Gehde M, Kipscholl R (2012) A new testing concept for determination of dynamic crack propagation in rubber materials. Kaut Gummi Kunst 65:49–53

    CAS  Google Scholar 

  41. Gent AN, Lindley PB, Thomas AG (1964) Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J Appl Polym Sci 8:455–466

    Google Scholar 

  42. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534

    CAS  Google Scholar 

  43. Eisele U, Kelbch SA, Engels HW (1992) The tear analyzer – a new tool for quantitative measurements of the dynamic crack growth of elastomers. Kaut Gummi Kunst 45:1064–1069

    CAS  Google Scholar 

  44. Stocek R, Heinrich G, Gehde M, Rauschenbach A (2012) Investigations about notch length in pure-shear test specimen for exact analysis of crack propagation in elastomers. J Plast Technol 1:2–22

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – DKRVO (RP/CPS/2020/004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stoček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kratina, O., Stoček, R., Zádrapa, P., Sathi, S.G. (2020). The Effect of Polyglycols on the Fatigue Crack Growth of Silica-Filled Natural Rubber. In: Heinrich, G., Kipscholl, R., Stoček, R. (eds) Fatigue Crack Growth in Rubber Materials. Advances in Polymer Science, vol 286. Springer, Cham. https://doi.org/10.1007/12_2020_69

Download citation

Publish with us

Policies and ethics