Skip to main content

Layered Fibrous Scaffolds/Membranes in Wound Healing

  • Chapter
  • First Online:
Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

  • 299 Accesses

Abstract

Skin is the largest organ of the human body acting as a barrier to protect the body from external effects and trauma. As a result of external physical damages or physiological disorders such as diabetes, skin tissue is disrupted, and cellular integrity is lost in the wounded site. Design and production of functional bioactive wound dressing matrices to protect the injured area, assist the wound healing process and guide the regeneration of healthy tissue are of utmost importance. Considering the complexity of the wound healing process and challenging requirements to fulfill the clinical need in terms of both healing and regeneration, multi-layered fibrous membranes/scaffolds offer an effective strategy for the design and development of multi-functional wound-healing matrices. Such matrices act to stimulate the wound-healing cascade by combining different materials with different physicochemical and structural properties in each layer and integration of various bioactive molecules and therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garg A, Naik A, Chakraborty M, Chauhan N, Chakraborty S, Das S, Misra SK (2022) Nanofibers: promising wound-healing material with modifiable flexibility. Biomed Product Mater Eval:95–134

    Google Scholar 

  2. Patil P, Pawar SH (2021) Wound dressing applications of nano-biofilms. Biopolymer Based Nano Films:247–268

    Google Scholar 

  3. Scalamandré A, Bogie KM (2020) Smart technologies in wound prevention and care. In: Innovations and emerging technologies in wound care, pp 225–244

    Google Scholar 

  4. Arida IA, Ali IH, Nasr M, El-Sherbiny IM (2021) Electrospun polymer-based nanofiber scaffolds for skin regeneration. J Drug Deliv Sci Technol 64:102623

    CAS  Google Scholar 

  5. Mohiti-Asli M, Loboa E (2016) Nanofibrous smart bandages for wound care. Wound Heal Biomater:483–499

    Google Scholar 

  6. Joshi M, Purwar R (2019) Composite dressings for wound care. In: Advanced textiles for wound care, pp 313–327

    Google Scholar 

  7. Kabashima K (2020) Overview: immunology of the skin. In: Immunology of the skin, pp 1–11

    Google Scholar 

  8. Tavakoli S, Klar AS (2020) Advanced hydrogels as wound dressings. Biomolecules 10(8):1169

    CAS  Google Scholar 

  9. Nour S, Imani R, Chaudhry GR, Sharifi AM (2021) Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches. J Biomed Mater Res A 109(4):453–478

    CAS  Google Scholar 

  10. Prasathkumar M, Sadhasivam S (2021) Chitosan/hyaluronic acid/alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing – know-how. Int J Biol Macromol 186:656–685

    CAS  Google Scholar 

  11. Smith R, Russo J, Fiegel J, Brogden N (2020) Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics 9(2):56

    CAS  Google Scholar 

  12. Rivero G, da Cunha MDPP, Caracciolo PC, Abraham GA (2022) Nanofibrous scaffolds for skin tissue engineering and wound healing applications. In: Tissue engineering using ceramics and polymers, pp 645–681

    Google Scholar 

  13. Naomi R, Ratanavaraporn J, Fauzi MB (2020) Comprehensive review of hybrid collagen and silk fibroin for cutaneous wound healing. Materials 13(14):3097

    CAS  Google Scholar 

  14. Schäfer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638

    Google Scholar 

  15. Cui L, Liang J, Liu H, Zhang K, Li J (2020) Nanomaterials for angiogenesis in skin tissue engineering. Tissue Eng Part B Rev 26(3):203–216

    CAS  Google Scholar 

  16. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym 236:116025

    CAS  Google Scholar 

  17. Vivcharenko V, Przekora A (2021) Modifications of wound dressings with bioactive agents to achieve improved pro-healing properties. Appl Sci 11(9):4114

    CAS  Google Scholar 

  18. Singh S, Young A, McNaught CE (2017) The physiology of wound healing. Surgery (Oxford) 35(9):473–477

    Google Scholar 

  19. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99(1):665–706

    CAS  Google Scholar 

  20. Sharifi S, Hajipour MJ, Gould L, Mahmoudi M (2020) Nanomedicine in healing chronic wounds: opportunities and challenges. Mol Pharm 18(2):550–575

    Google Scholar 

  21. Sucker C, Zotz RB (2015) The cell-based coagulation model. In: Perioperative hemostasis: coagulation for anesthesiologists, pp 3–11

    Google Scholar 

  22. Theoret C (2016) Physiology of wound healing. In: Equine wound management, pp 1–13

    Google Scholar 

  23. Laberge A, Moulin VJ (2018) The role of microvesicles in cutaneous wound healing. In: Wound healing: stem cells repair and restorations, basic and clinical aspects, pp 43–66

    Google Scholar 

  24. Tallapaneni V, Kalaivani C, Pamu D, Mude L, Singh SK, Karri VVSR (2021) Acellular scaffolds as innovative biomaterial platforms for the management of diabetic wounds. Tissue Eng Regen Med:1–22

    Google Scholar 

  25. Remoué N, Bonod C, Fromy B, Sigaudo-Roussel D (2020) Animal models in chronic wound healing research: for innovations and emerging technologies in wound care. In: Innovations and emerging technologies in wound care, pp 197–224

    Google Scholar 

  26. Bagchi D, Das A, Roy S (2020) Wound healing, tissue repair and regeneration in diabetes. Academic Press, Cambridge, pp 579–591

    Google Scholar 

  27. Plotczyk M, Higgins CA (2019) Skin biology. In: Biomaterials for skin repair and regeneration, pp 3–25

    Google Scholar 

  28. Qing C (2017) The molecular biology in wound healing & non-healing wound. Chin J Traumatol 20(4):189–193

    Google Scholar 

  29. Young A, McNaught CE (2011) The physiology of wound healing. Surgery (Oxford) 29(10):475–479

    Google Scholar 

  30. Jain R, Mitchell AJ, Tay SS, Roediger B, Weninger W (2016) Neutrophils. In: Immunology of the skin, pp 147–167

    Google Scholar 

  31. Gallagher KA (2020) Dysregulated inflammation in diabetic wounds. In: Wound healing, tissue repair, and regeneration in diabetes, pp 81–95

    Google Scholar 

  32. Cañedo-Dorantes L, Cañedo-Ayala M (2019) Skin acute wound healing: a comprehensive review. Int J Inflamm 2019:3706315

    Google Scholar 

  33. Larouche J, Sheoran S, Maruyama K, Martino MM (2018) Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv Wound Care 7(7):209–231

    Google Scholar 

  34. Enoch S, Leaper DJ (2008) Basic science of wound healing. Surgery (Oxford) 26(2):31–37

    Google Scholar 

  35. Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73(20):3861–3885

    Google Scholar 

  36. George Broughton I, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr 117(7S):1e-S–32e-S

    Google Scholar 

  37. Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P (2010) Wound healing in the 21st century. J Am Acad Dermatol 63(5):866–881

    Google Scholar 

  38. Darby IA, Laverdet B, Bonté F, Desmoulière A (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301

    Google Scholar 

  39. Kordestani SS (2019) In atlas of wound healing. Chapter 5 – wound care management, pp 31–47

    Google Scholar 

  40. Teller P, White TK (2011) The physiology of wound healing: injury through maturation. Perioper Care Oper 6(2):159–170

    Google Scholar 

  41. Häkkinen L, Koivisto L, Heino J, Larjava H (2015) Cell and molecular biology of wound healing. In: Stem cell biology and tissue engineering in dental sciences, pp 669–690

    Google Scholar 

  42. Gonzalez ACO, Costa TF, Andrade ZA, Medrado ARAP (2016) Wound healing – a literature review. An Bras Dermatol 91:614–620

    Google Scholar 

  43. Clark RA (1988) Wound repair. The molecular and cellular biology of wound repair, pp 3–50

    Google Scholar 

  44. Morton LM, Phillips TJ (2016) Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol 74(4):589–605

    Google Scholar 

  45. Son YJ, John WT, Zhou Y, Mao W, Yim EK, Yoo HS (2019) Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 7(11):4444–4471

    CAS  Google Scholar 

  46. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Google Scholar 

  47. Arif MM, Khan SM, Gull N, Tabish TA, Zia S, Khan RU, Butt MA (2021) Polymer-based biomaterials for chronic wound management: promises and challenges. Int J Pharm 598:120270

    Google Scholar 

  48. Li M, Hou Q, Zhong L, Zhao Y, Fu X (2021) Macrophage related chronic inflammation in non-healing wounds. Front Immunol 12:2289

    Google Scholar 

  49. Schreml S, Szeimies R, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268

    CAS  Google Scholar 

  50. Mudge EJ (2015) Recent accomplishments in wound healing. Int Wound J 12(1):4–9

    Google Scholar 

  51. Kathawala MH, Ng WL, Liu D, Naing MW, Yeong WY, Spiller KL, Ng KW (2019) Healing of chronic wounds: an update of recent developments and future possibilities. Tissue Eng Part B Rev 25(5):429–444

    Google Scholar 

  52. Iqbal A, Jan A, Wajid M, Tariq S (2017) Management of chronic non-healing wounds by hirudotherapy. World J Plast Surg 6(1):9

    Google Scholar 

  53. Morsi Y, Zhu T, Ahmad A, Xie X, Yu F, Mo X (2021) Electrospinning: an emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing. Front Mater Sci 15(1):10–35

    Google Scholar 

  54. Eskandarinia A, Kefayat A, Agheb M, Rafienia M, Amini Baghbadorani M, Navid S, Ghahremani F (2020) A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci Rep 10(1):1–15

    Google Scholar 

  55. Unnithan AR, Sasikala AR, Park CH, Kim CS (2017) Electrospun polyurethane nanofibrous mats for wound dressing applications. In: Polyurethane polymers: blends and interpenetrating polymer networks, pp 233–246

    Google Scholar 

  56. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    CAS  Google Scholar 

  57. Raina N, Pahwa R, Khosla JK, Gupta PN, Gupta M (2021) Polycaprolactone-based materials in wound healing applications. Polym Bull:1–23

    Google Scholar 

  58. Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Motaung KSCM (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018:2495848

    Google Scholar 

  59. Raina N, Rani R, Pahwa R, Gupta M (2022) Biopolymers and treatment strategies for wound healing: an insight view. Int J Polym Mater Polym Biomater 71(5):359–375

    CAS  Google Scholar 

  60. Yamakawa S, Hayashida K (2019) Advances in surgical applications of growth factors for wound healing. Burns Trauma:7–10

    Google Scholar 

  61. Park JW, Hwang SR, Yoon IS (2017) Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22(8):1259

    Google Scholar 

  62. Afsharian YP, Rahimnejad M (2020) Bioactive electrospun scaffolds for wound healing applications: a comprehensive review. Polym Test 93:106952

    Google Scholar 

  63. Miguel SP, Sequeira RS, Moreira AF, Cabral CS, Mendonça AG, Ferreira P, Correia IJ (2019) An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm 139:1–22

    CAS  Google Scholar 

  64. Thönes S, Rother S, Wippold T, Blaszkiewicz J, Balamurugan K, Moeller S, Anderegg U (2019) Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomater 86:135–147

    Google Scholar 

  65. Jimi S, Jaguparov A, Nurkesh A, Sultankulov B, Saparov A (2020) Sequential delivery of cryogel released growth factors and cytokines accelerates wound healing and improves tissue regeneration. Front Bioeng Biotechnol 8:345

    Google Scholar 

  66. Wang W, Lin S, Xiao Y, Huang Y, Tan Y, Cai L, Li X (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82(3–4):190–204

    CAS  Google Scholar 

  67. Matsumoto Y, Kuroyanagi Y (2010) Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J Biomater Sci Polym Ed 21(6–7):15–726

    Google Scholar 

  68. Asiri A, Saidin S, Sani MH, Al-Ashwal RH (2021) Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci Rep 11(1):1–14

    Google Scholar 

  69. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  Google Scholar 

  70. Branski L, Pereira C, Herndon D, Jeschke M (2007) Gene therapy in wound healing: present status and future directions. Gene Ther 14(1):1–10

    CAS  Google Scholar 

  71. Zubair M, Ahmad J (2019) Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Rev Endocr Metab Disord 20(2):207–217

    Google Scholar 

  72. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

    CAS  Google Scholar 

  73. Zarei F, Soleimaninejad M (2018) Role of growth factors and biomaterials in wound healing. Artif Cells Nanomed Biotechnol 46(Suppl 1):906–911

    CAS  Google Scholar 

  74. Koike Y, Yozaki M, Utani A, Murota H (2020) Fibroblast growth factor 2 accelerates the epithelial–mesenchymal transition in keratinocytes during wound healing process. Sci Rep 10(1):1–13

    Google Scholar 

  75. Nakamizo S, Egawa G, Doi H, Natsuaki Y, Miyachi Y, Kabashima K (2013) Topical treatment with basic fibroblast growth factor promotes wound healing and barrier recovery induced by skin abrasion. Skin Pharmacol Physiol 26(1):22-9

    Google Scholar 

  76. Peng C, Chen B, Kao H-K, Murphy G, Orgill DP, Guo L (2011) Lack of FGF-7 further delays cutaneous wound healing in diabetic mice. Plast Reconstr 128(6):673e–684e

    Google Scholar 

  77. Gao S, Guo K, Chen Y, Zhao J, Jing R, Wang L, Li X (2021) Keratinocyte growth factor 2 ameliorates UVB-induced skin damage via activating the AhR/Nrf2 signaling pathway. Front Pharmacol 12:655281

    CAS  Google Scholar 

  78. Park KH, Han SH, Hong JP, Han S-K, Lee D-H, Kim BS, Lee JW (2018) Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: a phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res Clin Pract 142:335–344

    CAS  Google Scholar 

  79. Blumenberg M (2013) Profiling and metaanalysis of epidermal keratinocytes responses to epidermal growth factor. BMC Genomics 14(1):1–20

    Google Scholar 

  80. Zhang J, Hu W, Diao Q, Wang Z, Miao J, Chen X, Xue Z (2019) Therapeutic effect of the epidermal growth factor on diabetic foot ulcer and the underlying mechanisms. Exp Ther Med 17(3):1643–1648

    CAS  Google Scholar 

  81. Johnson NR, Wang Y (2013) Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release 166(2):124–129

    CAS  Google Scholar 

  82. Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR (2018) Heparin-binding epidermal growth factor–like growth factor as a critical mediator of tissue repair and regeneration. Am J Clin Pathol 188(11):2446–2456

    CAS  Google Scholar 

  83. Johnson NR, Wang Y (2015) Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen 23(4):591–600

    Google Scholar 

  84. Kim I, Mogford JE, Chao JD, Mustoe TA (2001) Wound epithelialization deficits in the transforming growth factor-α knockout mouse. Wound Repair Regen 9(5):386–390

    CAS  Google Scholar 

  85. Li Y, Fan J, Chen M, Li W, Woodley DT (2006) Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration. J Invest Dermatol 126(9):2096–2105

    CAS  Google Scholar 

  86. Saaristo A, Tammela T, Fārkkilā A, Kärkkäinen M, Suominen E, Yla-Herttuala S, Alitalo K (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Clin Pathol 169(3):1080–1087

    CAS  Google Scholar 

  87. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Clin Pathol 164(6):1935–1947

    CAS  Google Scholar 

  88. Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care 3(10):647–661

    Google Scholar 

  89. Clark RAF (1996) The molecular and cellular biology of wound repair.2nd edn. Plenum Press, New York, pp 339–354

    Google Scholar 

  90. Okizaki S-i, Ito Y, Hosono K, Oba K, Ohkubo H, Amano H, Majima M (2015) Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed Pharmacother 70:317–325

    CAS  Google Scholar 

  91. Chong DL, Trinder S, Labelle M, Rodriguez-Justo M, Hughes S, Holmes AM, Porter JC (2020) Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing. J Tissue Eng Regen Med 14(4):645–649

    CAS  Google Scholar 

  92. White LA, Mitchell TI, Brinckerhoff CE (2000) Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. BBA Gene Struct Expr 1490(3):259–268

    CAS  Google Scholar 

  93. Thompson HGR, Mih JD, Krasieva TB, Tromberg BJ, George SC (2006) Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 291(6):L1277–L1L85

    CAS  Google Scholar 

  94. Evrard S, D’Audigier C, Mauge L, Israël-Biet D, Guerin C, Bieche I, Smadja DM (2012) The profibrotic cytokine transforming growth factor-β1 increases endothelial progenitor cell angiogenic properties. J Thromb Haemost 10(4):670–679

    CAS  Google Scholar 

  95. Tsunawaki S, Sporn M, Ding A, Nathan C (1988) Deactivation of macrophages by transforming growth factor-β. Nature 334(6179):260–262

    CAS  Google Scholar 

  96. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Google Scholar 

  97. Gailit J, Clark RA, Welch MP (1994) TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol 103(2):221–227

    CAS  Google Scholar 

  98. Le M, Naridze R, Morrison J, Biggs LC, Rhea L, Schutte BC, Dunnwald M (2012) Transforming growth factor Beta 3 is required for excisional wound repair in vivo. PLoS One 7(10):e48040

    CAS  Google Scholar 

  99. Occleston NL, Laverty HG, O'Kane S, Ferguson MW (2008) Prevention and reduction of scarring in the skin by transforming growth factor beta 3 (TGFβ3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed 19(8):1047–1063

    CAS  Google Scholar 

  100. Henshaw FR, Boughton P, Lo L, McLennan SV, Twigg SM (2015) Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing. J Diabetes Res 2015:236238

    CAS  Google Scholar 

  101. Shome D, von Woedtke T, Riedel K, Masur K (2020) The HIPPO transducer YAP and its targets CTGF and Cyr61 drive a paracrine signalling in cold atmospheric plasma-mediated wound healing. Oxid Med Cell Longev 2020:1–14

    Google Scholar 

  102. Cho K-H, Singh B, Maharjan S, Jang Y, Choi Y-J, Cho C-S (2017) Local delivery of CTGF siRNA with poly (sorbitol-co-PEI) reduces scar contraction in cutaneous wound healing. Tissue Eng Regen 14(3):211–220

    CAS  Google Scholar 

  103. Augustine R, Zahid AA, Hasan A, Wang M, Webster TJ (2019) CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int J Nanomedicine 14:8573

    CAS  Google Scholar 

  104. Nosrati H, Khodaei M, Alizadeh Z, Banitalebi-Dehkordi M (2021) Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 192:298–322

    CAS  Google Scholar 

  105. Lee C-H, Chao Y-K, Chang S-H, Chen W-J, Hung K-C, Liu S-J, Wang FS (2016) Nanofibrous rhPDGF-eluting PLGA–collagen hybrid scaffolds enhance healing of diabetic wounds. RSC Adv 6(8):6276–6284

    CAS  Google Scholar 

  106. Lee C-H, Liu K-S, Chang S-H, Chen W-J, Hung K-C, Liu S-J, Wang FS (2015) Promoting diabetic wound therapy using biodegradable rhPDGF-loaded nanofibrous membranes: CONSORT-compliant article. Medicine 94(47)

    Google Scholar 

  107. Wang Z, Qian Y, Li L, Pan L, Njunge LW, Dong L, Yang L (2016) Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl 30(6):686–698

    CAS  Google Scholar 

  108. Catanzano O, Quaglia F, Boateng JS (2021) Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin Drug Deliv:1–23

    Google Scholar 

  109. Chummun I, Bekah D, Goonoo N, Bhaw-Luximon A (2021) Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds. RSC Med Chem 12:1476–1149

    CAS  Google Scholar 

  110. Seif S, Planz V, Windbergs M (2017) Delivery of therapeutic proteins using electrospun fibers – recent developments and current challenges. Arch Pharm 350(10):1700077

    Google Scholar 

  111. Buzgo M, Mickova A, Rampichova M, Doupnik M (2018) Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. In: Core-shell nanostructures for drug delivery and theranostics, pp 325–347

    Google Scholar 

  112. Burlaga N, Bartolewska M, Buzgo M, Simaite A (2020) Optimization of the emulsion electrospinning for increased activity of biopharmaceuticals. MDPI Proc 78(1):39

    Google Scholar 

  113. Tığlı RS, Kazaroğlu NM, Mavış B, Gümüşderelioğlu M (2011) Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds. J Biomater Sci Polym Ed 22(1–3):207–223

    Google Scholar 

  114. Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y, Cui W (2014) bFGF-grafted electrospun fibrous scaffolds via poly (dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645

    CAS  Google Scholar 

  115. Xu F, Wang H, Zhang J, Jiang L, Zhang W, Hu Y (2020) A facile design of EGF conjugated PLA/gelatin electrospun nanofibers for nursing care of in vivo wound healing applications. J Ind Text. https://doi.org/10.1177/1528083720976348

  116. Golchin A, Nourani MR (2020) Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing. Polym Adv Technol 31(11):2443–2452

    CAS  Google Scholar 

  117. Vijayan A, Nanditha C, Kumar GV (2021) ECM-mimicking nanofibrous scaffold enriched with dual growth factor carrying nanoparticles for diabetic wound healing. Nanoscale Adv 3(11):3085–3092

    CAS  Google Scholar 

  118. Hajimiri M, Shahverdi S, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dinarvand R (2016) Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev Ind Pharm 42(5):707–719

    CAS  Google Scholar 

  119. Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821

    CAS  Google Scholar 

  120. Piran M, Vakilian S, Piran M, Mohammadi-Sangcheshmeh A, Hosseinzadeh S, Ardeshirylajimi A (2018) In vitro fibroblast migration by sustained release of PDGF-BB loaded in chitosan nanoparticles incorporated in electrospun nanofibers for wound dressing applications. Artif Cells Nanomed Biotechnol 46(sup1):511–520

    CAS  Google Scholar 

  121. Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Williams GR (2021) Protein encapsulation by electrospinning and electrospraying. J Control Release 329:1172–1197

    CAS  Google Scholar 

  122. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L (2012) Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm 81(1):1–13

    CAS  Google Scholar 

  123. Mouriño V (2018) Nanoelectrospun matrices for localized drug delivery. In: Applications of nanocomposite materials in drug delivery, pp 491–508

    Google Scholar 

  124. Buyana B, Alven S, Nqoro X, Aderibigbe BA (2020) Antibiotics encapsulated scaffolds as potential wound dressings. Antibiotic Mater Healthcare:111–128

    Google Scholar 

  125. Razzaq A, Khan ZU, Saeed A, Shah KA, Khan NU, Menaa B, Menaa F (2021) Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments. Pharmaceutics 13(3):349

    CAS  Google Scholar 

  126. Kalalinia F, Taherzadeh Z, Jirofti N, Amiri N, Foroghinia N, Beheshti M, Movaffagh J (2021) Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int J Biol Macromol 177:100–110

    CAS  Google Scholar 

  127. Turan CU, Metin A, Guvenilir Y (2021) Controlled release of tetracycline hydrochloride from poly (ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Eur J Pharm Biopharm 162:59–69

    Google Scholar 

  128. Letha SS, Kumar AS, Nisha U, Rosemary M (2021) Electrospun polyurethane-gelatin artificial skin scaffold for wound healing. J Text Inst:1–10

    Google Scholar 

  129. Bakhsheshi-Rad H, Hadisi Z, Ismail A, Aziz M, Akbari M, Berto F, Chen XB (2020) In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 82:106298

    CAS  Google Scholar 

  130. Abdel-Rahman LM, Eltaher HM, Abdelraouf K, Bahey-El-Din M, Ismail C, Kenawy ERS, El-Khordagui LK (2020) Vancomycin-functionalized Eudragit-based nanofibers: tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol 58:101812

    CAS  Google Scholar 

  131. Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Darban SA, Bazzaz BSF, Movaffagh J (2020) Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol 162:645–656

    CAS  Google Scholar 

  132. Thairin T, Wutticharoenmongkol P (2021) Ciprofloxacin-loaded alginate/poly (vinyl alcohol)/gelatin electrospun nanofiber mats as antibacterial wound dressings. J Ind Text. https://doi.org/10.1177/1528083721997466

  133. Pereira RF, Bartolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care 5(5):208–229

    Google Scholar 

  134. Mele E (2020) Electrospinning of essential oils. Polymers 12(4):908

    CAS  Google Scholar 

  135. García-Salinas S, Evangelopoulos M, Gámez-Herrera E, Arruebo M, Irusta S, Taraballi F, Tasciotti E (2020) Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int J Pharm 577:119067

    Google Scholar 

  136. Huang K, Jinzhong Z, Zhu T, Morsi Y, Aldalbahi A, El-Newehy M, Mo X (2020) PLCL/silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: fabrication, characterization and biological evaluation. Colloids Surf B Biointerfaces 196:111352

    Google Scholar 

  137. Lee K, Lee S (2020) Electrospun nanofibrous membranes with essential oils for wound dressing applications. Fibers Polym 21(5):999–1012

    CAS  Google Scholar 

  138. Liu J-X, Dong W-H, Mou X-J, Liu G-S, Huang X-W, Yan X, Long YZ (2019) In situ electrospun zein/thyme essential oil-based membranes as an effective antibacterial wound dressing. ACS Appl Bio Mater 3(1):302–307

    Google Scholar 

  139. Felgueiras HP, Homem NC, Teixeira MA, Ribeiro AR, Antunes JC, Amorim MTP (2020) Physical, thermal, and antibacterial effects of active essential oils with potential for biomedical applications loaded onto cellulose acetate/polycaprolactone wet-spun microfibers. Biomol Ther 10(8):1129

    CAS  Google Scholar 

  140. Altaf F, Niazi MBK, Jahan Z, Ahmad T, Akram MA, Butt MS, Sher F (2021) Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. J Polym Environ 29(1):156–174

    CAS  Google Scholar 

  141. Ngampunwetchakul L, Toonkaew S, Supaphol P, Suwantong O (2019) Semi-solid poly (vinyl alcohol) hydrogels containing ginger essential oil encapsulated in chitosan nanoparticles for use in wound management. J Polym Res 26(9):1–8

    Google Scholar 

  142. Shefa AA, Sultana T, Park MK, Lee SY, Gwon JG, Lee BT (2020) Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater Des 186:108313

    CAS  Google Scholar 

  143. Sahu A, Kasoju N, Goswami P, Bora U (2011) Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl 25(6):619–639

    CAS  Google Scholar 

  144. Zhao Y, Dai C, Wang Z, Chen W, Liu J, Zhuo R, Huang (2019) A novel curcumin-loaded composite dressing facilitates wound healing due to its natural antioxidant effect. Drug Des Devel Ther 13:3269

    Google Scholar 

  145. Patrulea V, Borchard G, Jordan O (2020) An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics 12(9):840

    CAS  Google Scholar 

  146. Anjana JK, Rajan V, Biswas R, Jayakumar R (2017) Controlled delivery of bioactive molecules for the treatment of chronic wounds. Curr Pharm Des 23(24):3529–3537

    CAS  Google Scholar 

  147. Thapa RK, Diep DB, Tønnesen HH (2020) Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater 103:52–67

    CAS  Google Scholar 

  148. Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q (2021) Antimicrobial peptides: the promising therapeutics for cutaneous wound healing. Macromol Biosci 21:10–2100103

    Google Scholar 

  149. Yang X, Guo JL, Han J, Si RJ, Liu PP, Zhang ZR, Zhang J (2020) Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue injury healing in a mouse model. Mil Med Res 7(1):1–10

    CAS  Google Scholar 

  150. Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, Wang J (2018) Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 13:2217

    CAS  Google Scholar 

  151. Afshar A, Yuca E, Wisdom C, Alenezi H, Ahmed J, Tamerler C, Edirisinghe M (2021) Next-generation antimicrobial peptides (AMPs) incorporated nanofibre wound dressings. Med Devices Sens 4(1):e10144

    CAS  Google Scholar 

  152. Chaiarwut S, Ekabutr P, Chuysinuan P, Chanamuangkon T, Supaphol P (2021) Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. J Polym Res 28(9):1–19

    Google Scholar 

  153. Weishaupt R, Zünd JN, Heuberger L, Zuber F, Faccio G, Robotti F, Guex AG (2020) Antibacterial, cytocompatible, sustainably sourced: cellulose membranes with bifunctional peptides for advanced wound dressings. Adv Healthc Mater 9(7):1901850

    CAS  Google Scholar 

  154. Yang Q, Xie Z, Hu J, Liu Y (2021) Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng C 128:112319

    CAS  Google Scholar 

  155. Khosravimelal S, Chizari M, Farhadihosseinabadi B, Moghaddam MM, Gholipourmalekabadi M (2021) Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. J Mater Sci Mater Med 32(9):1–11

    Google Scholar 

  156. Li W, Yu Q, Yao H, Zhu Y, Topham PD, Yue K, Wang L (2019) Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns. Acta Biomater 92:60–70

    CAS  Google Scholar 

  157. Román JT, Fuenmayor CA, Dominguez CMZ, Clavijo-Grimaldo D, Acosta M, García-Castañeda JE, Rivera-Monroy ZJ (2019) Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21–25) Pal obtained via electrospinning. RSC Adv 9(35):20432–20438

    Google Scholar 

  158. Amariei G, Kokol V, Boltes K, Letón P, Rosal R (2018) Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Adv 8(49):28013–28023

    CAS  Google Scholar 

  159. Li J, Xing R, Bai S, Yan X (2019) Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 15(8):1704–1715

    CAS  Google Scholar 

  160. Obuobi S, Tay HK-L, Tram NDT, Selvarajan V, Khara JS, Wang Y, Ee PLR (2019) Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J Control Release 313:120–130

    CAS  Google Scholar 

  161. Sousa MG, Rezende TM, Franco OL (2021) Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discov Today 26(8):2064–2074

    CAS  Google Scholar 

  162. Niño-Martínez N, Salas Orozco MF, Martínez-Castañón G-A, Torres Méndez F, Ruiz F (2019) Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci 20(11):2808

    Google Scholar 

  163. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Souto EB (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2):292

    Google Scholar 

  164. Correa MG, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL (2020) Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol 11(1):1450–1469

    CAS  Google Scholar 

  165. Milan PB, Kargozar S, Joghataie MT, Samadikuchaksaraei A (2019) Nanoengineered biomaterials for skin regeneration. In: Nanoengineered biomaterials for regenerative medicine, pp 265–283

    Google Scholar 

  166. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141

    Google Scholar 

  167. Pangli H, Vatanpour S, Hortamani S, Jalili R, Ghahary A (2021) Incorporation of silver nanoparticles in hydrogel matrices for controlling wound infection. J Burn Care Res 42(4):785–793

    Google Scholar 

  168. Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS (2021) Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: a review. Int J Biol Macromol 187:755–768

    CAS  Google Scholar 

  169. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    CAS  Google Scholar 

  170. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430

    CAS  Google Scholar 

  171. Aldalbahi A, El-Naggar ME, Ahmed M, Periyasami G, Rahaman M, Menazea A (2020) Core–shell Au@ Se nanoparticles embedded in cellulose acetate/polyvinylidene fluoride scaffold for wound healing. J Mater Res Technol 9(6):15045–15056

    CAS  Google Scholar 

  172. Xiao J, Chen S, Yi J, Zhang HF, Ameer GA (2017) A cooperative copper metal–organic framework-hydrogel system improves wound healing in diabetes. Adv Funct Mater 27(1):1604872

    Google Scholar 

  173. Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, Ameer GA (2018) Copper metal–organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12(2):1023–1032

    CAS  Google Scholar 

  174. Qian S, Song L, Sun L, Zhang X, Xin Z, Yin J, Luan S (2020) Metal-organic framework/poly (ε-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. J Photochem Photobiol A Chem 400:112626

    CAS  Google Scholar 

  175. Li J, Lv F, Li J, Li Y, Gao J, Luo J, Xu H (2020) Cobalt-based metal–organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res 13(8):2268–2279

    CAS  Google Scholar 

  176. Zhang S, Ye J, Sun Y, Kang J, Liu J, Wang Y, Ning G (2020) Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem Eng J 390:124523

    CAS  Google Scholar 

  177. Zhang P, Li Y, Tang Y, Shen H, Li J, Yi Z, Xu H (2020) Copper-based metal–organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl Mater Interfaces 12(16):18319–18331

    CAS  Google Scholar 

  178. Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, Wang C (2020) Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application. Int J Biol Macromol 158:9–17

    CAS  Google Scholar 

  179. Wang Y, Ying T, Li J, Xu Y, Wang R, Ke Q, Lin K (2020) Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chem Eng J 402:126273

    CAS  Google Scholar 

  180. Ren X, Yang C, Zhang L, Li S, Shi S, Wang R, Wang J (2019) Copper metal–organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 11(24):11830–11838

    CAS  Google Scholar 

  181. Javanbakht S, Nabi M, Shadi M, Amini MM, Shaabani A (2021) Carboxymethyl cellulose/tetracycline@ UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int J Biol Macromol 188:811–819

    CAS  Google Scholar 

  182. Zhu Y, Yao Z, Liu Y, Zhang W, Geng L, Ni T (2020) Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications. Int J Nanomedicine 15:333

    CAS  Google Scholar 

  183. Yu Y, Chen G, Guo J, Liu Y, Ren J, Kong T, Zhao Y (2018) Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Mater Horiz 5(6):1137–1142

    CAS  Google Scholar 

  184. Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal J (2019) Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 33(3):484–496

    CAS  Google Scholar 

  185. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7(1):1–21

    Google Scholar 

  186. Menon GK (2015) Skin basics; structure and function. Lipids and Skin. Health:9–23

    Google Scholar 

  187. Chambers ES, Vukmanovic-Stejic M (2020) Skin barrier immunity and ageing. Immunology 160(2):116–125

    CAS  Google Scholar 

  188. Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK (2016) The dynamic anatomy and patterning of skin. Exp Dermatol 25(2):92–98

    Google Scholar 

  189. Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Arjmand B (2018) Tissue engineered skin substitutes. Cell Biol Transl Med 3:143–188

    Google Scholar 

  190. Tan SH, Ngo ZH, Leavesley D, Liang K (2022) Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Eng Part B Rev 28(1):160–181

    CAS  Google Scholar 

  191. Alves P, Santos M, Mendes S, Miguel SP, de Sá KD, Cabral CSD, Ferreira P (2019) Photocrosslinkable nanofibrous asymmetric membrane designed for wound dressing. Polymers 11(4):653

    CAS  Google Scholar 

  192. Yadav C, Chhajed M, Choudhury P, Sahu RP, Patel A, Chawla S, Maji PK (2021) Bio-extract amalgamated sodium alginate-cellulose nanofibres based 3D-sponges with interpenetrating BioPU coating as potential wound care scaffolds. Mater Sci Eng C 118:111348

    CAS  Google Scholar 

  193. Aragon J, Costa C, Coelhoso I, Mendoza G, Aguiar-Ricardo A, Irusta S (2019) Electrospun asymmetric membranes for wound dressing applications. Mater Sci Eng C 103:109822

    CAS  Google Scholar 

  194. Graça MF, de Melo-Diogo D, Correia IJ, Moreira AF (2021) Electrospun asymmetric membranes as promising wound dressings: a review. Pharmaceutics 13(2):183

    Google Scholar 

  195. Lin H-Y, Chen S-H, Chang S-H, Huang S-T (2015) Tri-layered chitosan scaffold as a potential skin substitute. J Biomater Sci Polym Ed 26(13):855–867

    CAS  Google Scholar 

  196. Haldar S, Sharma A, Gupta S, Chauhan S, Roy P, Lahiri D (2019) Bioengineered smart trilayer skin tissue substitute for efficient deep wound healing. Mater Sci Eng C 105:110140

    CAS  Google Scholar 

  197. Zhang M, Wang G, Wang D, Zheng Y, Li Y, Meng W, Lee S (2021) Ag@ MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int J Biol Macromol 175:481–494

    CAS  Google Scholar 

  198. Miguel SP, Cabral CS, Moreira AF, Correia IJ (2019) Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids Surf B Biointerfaces 181:994–1003

    CAS  Google Scholar 

  199. Şimşek M, Çapkın M, Karakeçili A, Gümüşderelioğlu M (2012) Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior. J Biomed Mater Res A 100(12):3332–3343

    Google Scholar 

  200. Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785

    CAS  Google Scholar 

  201. Yu B, He C, Wang W, Ren Y, Yang J, Guo S, Shi X (2020) Asymmetric wettable composite wound dressing prepared by electrospinning with bioinspired micropatterning enhances diabetic wound healing. ACS Appl Bio Mater 3(8):5383–5394

    CAS  Google Scholar 

  202. Miguel SP, Simões D, Moreira AF, Sequeira RS, Correia IJ (2019) Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int J Biol Macromol 121:524–535

    CAS  Google Scholar 

  203. Qi L, Ou K, Hou Y, Yuan P, Yu W, Li X, Chen X (2021) Unidirectional water-transport antibacterial trilayered nanofiber-based wound dressings induced by hydrophilic-hydrophobic gradient and self-pumping effects. Mater Des 201:109461

    CAS  Google Scholar 

  204. Ma B, Xie J, Jiang J, Wu J (2014) Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials 35(2):630–641

    CAS  Google Scholar 

  205. Jafari A, Amirsadeghi A, Hassanajili S, Azarpira N (2020) Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int J Pharm 583:119413

    CAS  Google Scholar 

  206. Chen K, Pan H, Ji D, Li Y, Duan H, Pan W (2021) Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. Mater Sci Eng C 127:112245

    CAS  Google Scholar 

  207. Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, Rahaie M (2020) Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater 113:144–163

    CAS  Google Scholar 

  208. Yüksel E, Karakeçili A, Demirtaş TT, Gümüşderelioğlu M (2016) Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int J Biol Macromol 86:162–168

    Google Scholar 

  209. Ramanathan G, Seleenmary Sobhanadhas LS, Sekar Jeyakumar GF, Devi V, Sivagnanam UT, Fardim P (2020) Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application. Biomacromolecules 21(6):2512–2524

    CAS  Google Scholar 

  210. Uzunalan G, Ozturk MT, Dincer S, Tuzlakoglu K (2013) A newly designed collagen-based bilayered scaffold for skin tissue regeneration. J Compos Biodegrad Polym 1:8–15

    Google Scholar 

  211. Gunes S, Tamburaci S, Tihminlioglu F (2020) A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. J Mater Sci Mater Med 31(1):1–19

    Google Scholar 

  212. Deng A, Yang Y, Du S (2021) Tissue engineering 3D porous scaffolds prepared from electrospun recombinant human collagen (RHC) polypeptides/chitosan nanofibers. Appl Sci 11(11):5096

    CAS  Google Scholar 

  213. Arango MC, Álvarez-López C (2019) Effect of freezing temperature on the properties of lyophilized silk sericin scaffold. Mater Res Express 6(9):095414

    CAS  Google Scholar 

  214. Karizmeh MS, Poursamar SA, Kefayat A, Farahbakhsh Z, Rafienia M (2022) An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. Mater Sci Eng C:112667

    Google Scholar 

  215. Dalgic AD, Koman E, Karatas A, Tezcaner A, Keskin D (2021) Natural origin bilayer pullulan-PHBV scaffold for wound healing applications. Mater Sci Eng C:112554

    Google Scholar 

  216. Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH (2017) Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: implications for skin graft. Int J Biol Macromol 105:541–548

    CAS  Google Scholar 

  217. Asadi N, Mehdipour A, Ghorbani M, Mesgari-Abbasi M, Akbarzadeh A, Davaran S (2021) A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 193:734–747

    CAS  Google Scholar 

  218. Zandi N, Dolatyar B, Lotfi R, Shallageh Y, Shokrgozar MA, Tamjid E, Simchi A (2021) Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomater 124:191–204

    CAS  Google Scholar 

  219. Wang S, Xiong Y, Chen J, Ghanem A, Wang Y, Yang J, Sun B (2019) Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol:348

    Google Scholar 

  220. He H, Molnár K (2021) Fabrication of 3D printed nanocomposites with electrospun nanofiber interleaves. Addit Manuf 46:102030

    CAS  Google Scholar 

  221. Chu B, He JM, Wang Z, Liu LL, Li XL, Wu CX, Tu M (2021) Proangiogenic peptide nanofiber hydrogel/3D printed scaffold for dermal regeneration. Chem Eng J 424:128146

    CAS  Google Scholar 

  222. Clohessy RM, Cohen DJ, Stumbraite K, Boyan BD, Schwartz Z (2020) In vivo evaluation of an electrospun and 3D printed cellular delivery device for dermal wound healing. J Biomed Mater Res B Appl Biomater 108(6):2560–2570

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Karakeçili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Günyaktı, A., Demirtaş, T.T., Karakeçili, A. (2022). Layered Fibrous Scaffolds/Membranes in Wound Healing. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_124

Download citation

Publish with us

Policies and ethics