Skip to main content

Environmental Epigenomics and Its Applications in Marine Organisms

  • Chapter
  • First Online:
Population Genomics: Marine Organisms

Abstract

Although epigenetics is still a relatively new discipline, its development during the last 10 years has revolutionized the current understanding of genome structure and function. The present chapter provides an insight on the exciting field of environmental epigenetics (i.e., the cause-effect relationships between environmental signals and epigenetic modifications altering phenotypes) and its potential applications for different types of studies in the marine environment. In the first part of this chapter, this work focuses on defining epigenetics, the different mechanisms involved in the epigenetic regulation of gene expression, as well as their potential role during the evolution of life on Earth. In the second part, this chapter moves into the potential applications of epigenetics in marine organisms, using current research projects on model species ranging from marine invertebrates to large marine megafauna as references. Overall, the present contribution underscores the importance of environmental epigenetic studies in marine organisms to better understand how organisms respond to their surrounding environment, fostering the development of a new generation of biomarkers enhancing restoration, conservation, and management efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adam M, Robert F, Larochelle M, Gaudreau L. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol. 2001;21(18):6270–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allis D, Caparros ML, Jenuwein T, Reinberg D. Epigenetics. 2nd ed. Cold Spring Harbor, NY: Cold Spring Laboratory Press; 2015.

    Google Scholar 

  • Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C. Chromatin is an ancient innovation conserved between Archaea and Eukarya. Elife. 2012;1:e00078.

    PubMed  PubMed Central  Google Scholar 

  • Anastasiadi D, Díaz N, Piferrer F. Small Ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci Rep. 2017;7(1):12401.

    PubMed  PubMed Central  Google Scholar 

  • Aniagu SO, Williams TD, Allen Y, Katsiadaki I, Kevin Chipman J. Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus Aculeatus) after exposure to hexabromocyclododecane and 17-beta oestradiol. Environ Int. 2008;34(3):310–7.

    CAS  PubMed  Google Scholar 

  • Araya I, Nardocci G, Jp M, Mi V, Molina A, Alvarez M. MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish. Epigenetics Chromatin. 2010;3(1):14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ardura A, Zaiko A, Morán P, Planes S, Garcia-Vazquez E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep. 2017;7:42193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artemov AV, Mugue NS, Rastorguev SM, Zhenilo S, Mazur AM, Tsygankova SV, Boulygina ES, et al. Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions. Mol Biol Evol. 2017;34(9):2203–13.

    CAS  PubMed  Google Scholar 

  • Artyomov MN, Meissner A, Chakraborty AK. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced Pluripotency. PLoS Comput Biol. 2010;6(5):e1000785.

    PubMed  PubMed Central  Google Scholar 

  • Ausio J. Histone variants—the structure behind the function. Brief Funct Genomic Proteomic. 2006;5(3):228–43.

    CAS  PubMed  Google Scholar 

  • Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21(2):243–51.

    PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A. 2013;110(4):1387–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bateson W. Heredity and variation in modern lights. In: Seward AC, editor. Darwin and modern science. Cambridge: Cambridge University Press; 1909. p. 85–101.

    Google Scholar 

  • Bauden M, Pamart D, Ansari D, Herzog M, Eccleston M, Micallef J, Andersson B, Andersson R. Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin Epigenetics. 2015;7:106.

    PubMed  PubMed Central  Google Scholar 

  • Beaulieu M, Costantini D. Biomarkers of oxidative status: missing tools in conservation physiology. Conserv Physiol. 2014;2(1):cou014.

    PubMed  PubMed Central  Google Scholar 

  • Bellantuono AJ, Granadoes-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS One. 2012;7(11):e50685. https://doi.org/10.1371/journal.pone.0050685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    CAS  PubMed  Google Scholar 

  • Bizuayehu TT, Babiak I. MicroRNA in teleost fish. Genome Biol Evol. 2014;6(8):1911–37.

    PubMed  PubMed Central  Google Scholar 

  • Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genomics. 2015;16:305.

    PubMed  PubMed Central  Google Scholar 

  • Blevins T, Wang J, Pflieger D, Pontvianne F, Pikaard CS. Hybrid incompatibility caused by an epiallele. Proc Natl Acad Sci U S A. 2017;114(14):3702–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boening DW. An Evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess. 1999;55(3):459–70.

    CAS  Google Scholar 

  • Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, Kahn RS, Ophoff RA. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One. 2009;4(8):e6767.

    PubMed  PubMed Central  Google Scholar 

  • Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105(1):105–12.

    CAS  PubMed  Google Scholar 

  • Burgerhout E, Mommens M, Johnsen H, Aunsmo A, Santi N, Andersen Ø. Genetic background and embryonic temperature affect DNA methylation and expression of Myogenin and muscle development in Atlantic salmon (Salmo salar). PLoS One. 2017;12(6):e0179918.

    PubMed  PubMed Central  Google Scholar 

  • Burggren W. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology. 2016;5(2). https://doi.org/10.3390/biology5020024.

    PubMed Central  Google Scholar 

  • Burton GA, Allen Burton G, Johnston EL. Assessing contaminated sediments in the context of multiple stressors. Environ Toxicol Chem. 2010;29(12):2625–43.

    CAS  PubMed  Google Scholar 

  • Byun H-M, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 2013;10:18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Xinping H, et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun. 2016;7:11144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calmano W, Ahlf W, Fӧrstner U. Sediment quality assessment: chemical and biological approaches. In: Calmano W, Fӧrstner U, editors. Sediments and toxic substances: environmental effects and ecotoxity. Berlin: Springer; 1996. p. 1–35.

    Google Scholar 

  • Campos C, Valente L, Conceição L, Engrola S, Fernandes J. Temperature affects methylation of themyogeninputative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics. 2013;8(4):389–97.

    PubMed  PubMed Central  Google Scholar 

  • Capuano F, Mülleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA methylation is found in Drosophila Melanogaster but absent in Saccharomyces Cerevisiae, Schizosaccharomyces Pombe, and other yeast species. Anal Chem. 2014;86(8):3697–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Kang R, Fan X-G, Tang D. Release and activity of histone in diseases. Cell Death Dis. 2014;5(8):e1370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B-S, Li C-W. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data. BMC Syst Biol. 2016;10:18.

    PubMed  PubMed Central  Google Scholar 

  • Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl. 2015;8(1):23–46.

    PubMed  Google Scholar 

  • Coleman-Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 2012;8(10):e1002988.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortessis VK, Thomas DC, Joan Levine A, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131(10):1565–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossetti C, Lugini L, Astrologo L, Saggio I, Fais S, Spadafora C. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One. 2014;9(7):e101629.

    PubMed  PubMed Central  Google Scholar 

  • Costantini D. Does hormesis foster organism resistance to extreme events? Front Ecol Environ. 2014;12(4):209–10.

    Google Scholar 

  • Covelo-Soto L, Saura M, Morán P. Does DNA methylation regulate metamorphosis? The case of the sea lamprey (Petromyzon Marinus) as an example. Comp Biochem Physiol B Biochem Mol Biol. 2015;185:42–6.

    CAS  PubMed  Google Scholar 

  • Crespi EJ, Williams TD, Jessop TS, Delehanty B. Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals? Funct Ecol. 2012;27(1):93–106.

    Google Scholar 

  • Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B. 2015;282(1809):20141725. https://doi.org/10.1098/rspb.2014.1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deans C, Maggert KA. What do you mean, ‘epigenetic’? Genetics. 2015;199(4):887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deaton AM, Bird A. CpG Islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695). https://doi.org/10.1098/rstb.2015.0300 .

    Google Scholar 

  • Dimond JL, Roberts SB. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol Ecol. 2016;25(8):1895–904.

    CAS  PubMed  Google Scholar 

  • Dixon GB, Bay LK, Matz MV. Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora Millepora. BMC Genomics. 2014;15:1109.

    PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T. Studies on hybrid sterility. II. Localization of sterility factors in drosophila pseudoobscura hybrids. Genetics. 1936;21:113–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int. 2004;30(7):973–80.

    CAS  PubMed  Google Scholar 

  • Eirín-López JM, Ausió J. Origin and evolution of chromosomal sperm proteins. Bioessays. 2009;31(10):1062–70.

    PubMed  Google Scholar 

  • El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R, Wienker T, Oldenburg J. Gender specific differences in levels of DNA methylation at selected loci from human Total blood: a tendency toward higher methylation levels in males. Hum Genet. 2007;122(5):505–14.

    CAS  PubMed  Google Scholar 

  • Etchegaray JP, Mostoslavsky R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell. 2016;62(5):695–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.

    Google Scholar 

  • Farias ND, de Oliveira NFP, da Silva PM. Perkinsus infection is associated with alterations in the level of global DNA methylation of gills and gastrointestinal tract of the oyster Crassostrea gasar. J Invertebr Pathol. 2017;149:76–81.

    CAS  PubMed  Google Scholar 

  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    CAS  PubMed  Google Scholar 

  • Fellous A, Favrel P, Riviere G. Temperature influences histone methylation and mRNA expression of the Jmj-C histone-demethylase orthologues during the early development of the oyster Crassostrea gigas. Mar Genomics. 2015;19:23–30.

    PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107(19):8689–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foo SA, Byrne M. Acclimatization and adaptive capacity of marine species in a changing ocean. Adv Mar Biol. 2016;74:69–116.

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraune S, Forêt S, Reitzel AM. Using Nematostella Vectensis to study the interactions between genome, epigenome, and bacteria in a changing environment. Front Mar Sci. 2016;3. https://doi.org/10.3389/fmars.2016.00148 .

  • Gaffney PM. The role of genetics in shellfish restoration. Aquat Living Resour. 2006;19(3):277–82.

    Google Scholar 

  • Gajigan AP, Conaco C. A microRNA regulates the response of corals to thermal stress. Mol Ecol. 2017;26(13):3472–83.

    CAS  PubMed  Google Scholar 

  • Galván I, Inácio Â, Romero-Haro AA, Alonso-Alvarez C. Adaptive downregulation of pheomelanin-related Slc7a11 gene expression by environmentally induced oxidative stress. Mol Ecol. 2017;26(3):849–58.

    PubMed  Google Scholar 

  • Garfield EN. Case studies in coral restoration: assessing life history and longterm survival patterns in restoration outplants of Acropora cervicornis (Staghorn Coral) and Acropora palmata (Elkhorn Coral) in the Florida Keys and Belize. ProQuest Dissertations Publishing. Boston University. 2016. Retrieved from https://search.proquest.com/docview/1845308002/fulltextPDF/62D313E87714E0FPQ/1?accountid=10901.

  • Gavery MR, Roberts SB. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve Mollusc. PeerJ. 2013;1:e215.

    PubMed  PubMed Central  Google Scholar 

  • Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147.

    PubMed  PubMed Central  Google Scholar 

  • Gezer U, Yörüker EE, Keskin M, Kulle CB, Dharuman Y, Holdenrieder S. Histone methylation marks on circulating nucleosomes as novel blood-based biomarker in colorectal cancer. Int J Mol Sci. 2015;16(12):29654–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gierga G, Voss B, Hess WR. Non-coding RNAs in marine Synechococcus and their regulation under environmentally relevant stress conditions. ISME J. 2012;6(8):1544–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74(1):481–514.

    CAS  PubMed  Google Scholar 

  • González-Romero R, Rivera-Casas C, Fernández-Tajes J, Ausió J, Méndez J, Eirín-López JM. Chromatin specialization in bivalve molluscs: a leap forward for the evaluation of okadaic acid genotoxicity in the marine environment. Comp Biochem Physiol Toxicol Pharmacol. 2012a;155(2):175–81.

    Google Scholar 

  • González-Romero R, Rivera-Casas C, Frehlick LJ, Méndez J, Ausió J, Eirín-López JM. Histone H2A (H2A.X and H2A.Z) variants in molluscs: molecular characterization and potential implications for chromatin dynamics. PLoS One. 2012b;7(1):e30006. Public Library of Science

    PubMed  PubMed Central  Google Scholar 

  • González-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the eastern oyster Crassostrea Virginica. Aquat Toxicol. 2017;186:196–204.

    PubMed  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti MB. Effects of light deficiency on genome methylation in Posidonia Oceanica. Mar Ecol Prog Ser. 2013;473:103–14.

    CAS  Google Scholar 

  • Gu M, Naiyachit Y, Wood TJ, Millar CB. H2A.Z marks antisense promoters and has positive effects on antisense transcript levels in budding yeast. BMC Genomics. 2015;16(1):99.

    PubMed  PubMed Central  Google Scholar 

  • Guerrero-Bosagna C, Sabat P, Valladares L. Environmental signaling and evolutionary change: can exposure of pregnant mammals to environmental estrogens lead to epigenetically induced evolutionary changes in embryos? Evol Dev. 2005;7(4):341–50.

    CAS  PubMed  Google Scholar 

  • Hannum G, Guinney J, Zhao L, Li Z, Hughes G, Sadda S, Klotzle B, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

    CAS  PubMed  Google Scholar 

  • Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9(2):228–41.

    PubMed  Google Scholar 

  • Hauser M-T, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta. 2011;1809(8):459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW, Lacy RC. Measuring relatedness between inbred individuals. J Hered. 2015;106(1):20–5.

    PubMed  Google Scholar 

  • Henikoff S, Ahmad K. Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol. 2005;21(1):133–53.

    CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    CAS  PubMed  Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. MBio. 2016;7(4):e00560–16. https://doi.org/10.1128/mBio.00560-16.

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318(5857):1737–42.

    CAS  PubMed  Google Scholar 

  • Hofmann G. Ecological epigenetics in marine metazoans. Front Mar Sci. 2017. https://doi.org/10.3389/fmars.2017.00004.

  • Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16(2):71–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

    PubMed  PubMed Central  Google Scholar 

  • Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett. 2008;179(1):43–7.

    CAS  PubMed  Google Scholar 

  • Huh I, Zeng J, Park T, Soojin VY. DNA methylation and transcriptional noise. Epigenetics Chromatin. 2013;6(1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hume BCC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci U S A. 2016;113(16):4416–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huo D, Sun L, Li X, Xiaoshang R, Liu S, Zhang L, Xing L, Yang H. Differential expression of miRNAs in the respiratory tree of the sea cucumber Apostichopus Japonicus under hypoxia stress. G3. 2017;7(11):3681–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    CAS  PubMed  Google Scholar 

  • Jarman SN, Polanowski AM, Faux CE, Robbins J, De Paoli-Iseppi R, Bravington M, Deagle BE. Molecular biomarkers for chronological age in animal ecology. Mol Ecol. 2015;24(19):4826–47.

    CAS  PubMed  Google Scholar 

  • Jiao Y, Zheng Z, Xiaodong D, Wang Q, Huang R, Deng Y, Shi S, Zhao X. Identification and characterization of microRNAs in pearl oyster Pinctada martensii by Solexa deep sequencing. Marine Biotechnol. 2014;16(1):54–62.

    CAS  Google Scholar 

  • Joh RI, Palmieri CM, Hill IT, Motamadi M. Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta. 2014;1839(12):1385–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    CAS  PubMed  Google Scholar 

  • Jones TA, Monaco TA. A role for assisted evolution in designing native plant materials for domesticated landscapes. Front Ecol Environ. 2009;7(10):541–7.

    Google Scholar 

  • Juanchich A, Le Cam A, Montfort J, Guiguen Y, Bobe J. Identification of differentially expressed miRNAs and their potential targets during fish ovarian development. Biol Reprod. 2013;88(5):128.

    PubMed  Google Scholar 

  • Kasinsky E, Harold HEK, Eirin-Lopez JM, Ausio J. Protamines: structural complexity, evolution and chromatin patterning. Protein Pept Lett. 2011;18(8):755–71.

    CAS  PubMed  Google Scholar 

  • Kelly SA, Panhuis TM, Stoehr AM. Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol. 2012;2(2):1417–39.

    PubMed  Google Scholar 

  • Kim B-M, Kim J, Choi I-Y, Raisuddin S, Doris WTA, Leung KMY, Rudolf SSW, Rhee J-S, Lee J-S. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research. Mar Environ Res. 2016;113:141–52.

    CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    CAS  PubMed  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    CAS  PubMed  Google Scholar 

  • Kuhlmann M, Finke A, Mascher M, Mette MF. DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. Plant J. 2014;80(2):269–81.

    CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136–47.

    CAS  PubMed  Google Scholar 

  • Lahaye V, Bustamante P, Dabin W, Van Canneyt O, Dhermain F, Cesarini C, Pierce GJ, Caurant F. New insights from age determination on toxic element accumulation in striped and bottlenose dolphins from Atlantic and Mediterranean waters. Mar Pollut Bull. 2006;52(10):1219–30.

    CAS  PubMed  Google Scholar 

  • Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18(1):124.

    PubMed  PubMed Central  Google Scholar 

  • Lascelles B, Di Sciara NG, Agardy T, Cuttelod A, Eckert S, Glowka L, Hoyt E, Llewellyn F, Louzao M, Ridoux V, Tetley MJ. Migratory marine species: their status, threats and conservation management needs. Aquat Conserv. 2014. https://doi.org/10.1002/aqc.2512.

    Google Scholar 

  • Latimer J, Davis W, Keith D. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuar Coast Shelf Sci. 1999;49:577–95.

    CAS  Google Scholar 

  • Lau K, Lai KP, Bao JYJ, Na Z, Tse A, Tong A, Li JW, et al. Identification and expression profiling of microRNAs in the brain, liver and gonads of marine Medaka (Oryzias Melastigma) and in response to hypoxia. PLoS One. 2014;9(10):e110698.

    PubMed  PubMed Central  Google Scholar 

  • Lee T-F, Zhai J, Meyers BC. Conservation and divergence in eukaryotic DNA methylation. Proc Natl Acad Sci. 2010;107(20):9027–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133.

    PubMed  PubMed Central  Google Scholar 

  • Li A, Eirín-López JM, Ausió J. H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem Cell Biol. 2005;83(4):505–15.

    CAS  PubMed  Google Scholar 

  • Li J-W, Lin X, Tse A, Cheung A, Chan TF, Kong RYC, Lai KP, Rudolf Shiu Sun W. Discovery and functional characterization of novel miRNAs in the marine medaka Oryzias melastigma. Aquat Toxicol. 2016;175:106–16.

    CAS  PubMed  Google Scholar 

  • Li S, He F, Wen H, Li J, Si Y, Liu M, Huang Y, Meng L. Low salinity affects cellularity, DNA methylation, and mRNA expression of igf1 in the liver of half smooth tongue sole (Cynoglossus semilaevis). Fish Physiol Biochem. 2017;43(6):1587–602.

    CAS  PubMed  Google Scholar 

  • Liew YJ, Aranda M, Carr A, Baumgarten S, Zoccola D, Tambutté S, Allemand D, Micklem G, Voolstra CR. Identification of microRNAs in the coral Stylophora pistillata. PLoS One. 2014;9(3):e91101.

    PubMed  PubMed Central  Google Scholar 

  • Liew YJ, Ryu T, Aranda M, Ravasi T. Correction: miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia Testudinaria. PLoS One. 2016;11(4):e0153731.

    PubMed  PubMed Central  Google Scholar 

  • Lin S, Cheng S, Bo S, Zhong X, Lin X, Li W, Li L, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350(6261):691–4.

    CAS  PubMed  Google Scholar 

  • Lowdon RF, Jang HS, Wang T. Evolution of epigenetic regulation in vertebrate genomes. Trends Genet. 2016;32(5):269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–60.

    CAS  PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol. 2012;13(7):436–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000;154(1):459–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magistri M, Faghihi MA, Laurent GS 3rd, Wahlestedt C. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet. 2012;28(8):389–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol. 2003;10(11):882–91.

    CAS  PubMed  Google Scholar 

  • Marsh AG, Pasqualone AA. DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai. Front Physiol. 2014;5:173.

    PubMed  PubMed Central  Google Scholar 

  • Marsh AG, Hoadley KD, Warner ME. Distribution of CpG motifs in upstream gene domains in a reef coral and sea Anemone: implications for epigenetics in cnidarians. PLoS One. 2016;11(3):e0150840.

    PubMed  PubMed Central  Google Scholar 

  • Mashburn KL, Atkinson S. Evaluation of adrenal function in serum and feces of Steller sea lions (Eumetopias Jubatus): influences of molt, gender, sample storage, and age on glucocorticoid metabolism. Gen Comp Endocrinol. 2004;136(3):371–81.

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D. Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PLoS One. 2013;8(6):e63599. https://doi.org/10.1371/journal.pone.0063599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAnena P, Brown J, Kerin M. Circulating nucleosomes and nucleosome modifications as biomarkers in cancer. Cancer. 2017;9(1):5.

    Google Scholar 

  • Mercado-Molina AE, Ruiz-Diaz CP, Sabat AM. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J Nat Conserv. 2015;24:17–23.

    Google Scholar 

  • Metzger DCH, Schulte PM. Epigenomics in marine fishes. Mar Genomics. 2016;30:43–54.

    PubMed  Google Scholar 

  • Miller JR, Hobbs RJ. Habitat restoration? Do we know what we? Re doing? Restor Ecol. 2007;15(3):382–90.

    Google Scholar 

  • Mirbahai L, Chipman JK. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures. Mutat Res Genet Toxicol Environ Mutagen. 2014;764–765:10–7.

    PubMed  Google Scholar 

  • Mirbahai L, Williams TD, Zhan H, Gong Z, Kevin Chipman J. Comprehensive profiling of zebrafish hepatic proximal promoter CpG Island methylation and its modification during chemical carcinogenesis. BMC Genomics. 2011a;12:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirbahai L, Yin G, Bignell JP, Li N, Williams TD, Chipman JK. DNA methylation in liver tumorigenesis in fish from the environment. Epigenetics. 2011b;6(11):1319–33.

    CAS  PubMed  Google Scholar 

  • Mirbahai L, Southam AD, Sommer U, Williams TD, Bignell JP, Lyons BP, Viant MR, Chipman JK. Disruption of DNA methylation via S-adenosylhomocysteine is a key process in high incidence liver carcinogenesis in fish. J Proteome Res. 2013;12(6):2895–904.

    CAS  PubMed  Google Scholar 

  • Morán P, Pérez-Figueroa A. Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Genet. 2011;12:86.

    PubMed  PubMed Central  Google Scholar 

  • Moran Y, Fredman D, Praher D, Li XZ, Wee LM, Rentzsch F, Zamore PD, Technau U, Seitz H. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24(4):651–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(Suppl 1):R47–58.

    CAS  PubMed  Google Scholar 

  • Mudbhary R, Sadler KC. Epigenetics, development, and cancer: zebrafish make their mark. Birth Defects Res C Embryo Today. 2011;93(2):194–203.

    CAS  PubMed  Google Scholar 

  • Muller HJ. Isolating mechanisms, evolution and temperature. Biol Symp. 1942;6:71–125.

    Google Scholar 

  • Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA. Population dynamics of exploited fish stocks at low population levels. Science. 1995;269(5227):1106–8.

    CAS  PubMed  Google Scholar 

  • Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European Sea bass. PLoS Genet. 2011;7(12):e1002447.

    PubMed  PubMed Central  Google Scholar 

  • Norouzitallab P, Baruah K, Vandegehuchte M, Van Stappen G, Catania F, Vanden Bussche J, Vanhaecke L, Sorgeloos P, Bossier P. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. FASEB J. 2014;28(8):3552–63.

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    CAS  PubMed  Google Scholar 

  • Okubo N, Omori M. The review of coral transplantation around the world. J Jpn Coral Reef Soc. 2001;2001(3):31–40.

    Google Scholar 

  • Olsen MT, Bérubé M, Robbins J, Palsbøll PJ. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the Singleplex and multiplex qPCR methods. BMC Genet. 2012;13:77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi SKT, Qiu C, Bernstein E, Li K, Da J, Yang Z, Erdjument-Bromage H, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, Cormick C, et al. Shifting paradigms in restoration of the world’s coral reefs. Glob Chang Biol. 2017;23(9):3437–48.

    PubMed  Google Scholar 

  • Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6. https://doi.org/10.3389/fgene.2015.00002 .

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344(6186):895–8.

    CAS  PubMed  Google Scholar 

  • Parodi F, Carosio R, Ragusa M, Di Pietro C, Maugeri M, Barbagallo D, Sallustio F, et al. Epigenetic dysregulation in neuroblastoma: a tale of miRNAs and DNA methylation. Biochim Biophys Acta. 2016;1859(12):1502–14.

    CAS  PubMed  Google Scholar 

  • Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey KL. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur J Biochem. 2004;271(23–24):4825–33.

    CAS  PubMed  Google Scholar 

  • Peat JR, Ortega-Recalde O, Kardailsky O, Hore TA. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Res. 2017;6:526.

    PubMed  PubMed Central  Google Scholar 

  • Pérez JE, Nirchio M, Alfonsi C, Muñoz C. The biology of invasions: the genetic adaptation paradox. Biol Invasions. 2006;8(5):1115–21.

    Google Scholar 

  • Perrin WF, Myrick AC. Age determination of toothed whales and sirenians. Vol. 3, Issue 3. Cambridge: International Whaling Commission: Special Issue. Print; 1980.

    Google Scholar 

  • Picone B, Rhode C, Roodt-Wilding R. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae. Mar Genomics. 2017;31:9–12.

    PubMed  Google Scholar 

  • Pierron F, Baillon L, Sow M, Gotreau S, Gonzalez P. Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel. Environ Sci Technol. 2014;48(1):797–803.

    CAS  PubMed  Google Scholar 

  • Pogribny IP. Epigenetic events in tumorigenesis: putting the pieces together. Exp Oncol. 2010;32(3):132–6.

    CAS  PubMed  Google Scholar 

  • Poirier AC, Schmitt P, Rosa RD, Vanhove AS, Kieffer-Jaquinod S, Rubio TP, Charrière GM, Destoumieux-Garzón D. Antimicrobial histones and DNA traps in invertebrate immunity. J Biol Chem. 2014;289(36):24821–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polanowski AM, Robbins J, Chandler D, Jarman SN. Epigenetic estimation of age in humpback whales. Mol Ecol Resour. 2014;14(5):976–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poloczanska ES, Burrows MT, Brown CJ, Molinos JG, Halpern BS, Hoegh-Guldberg O, Kappel CV, et al. Responses of marine organisms to climate change across oceans. Front Mar Sci. 2016;3. https://doi.org/10.3389/fmars.2016.00062 .

  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    CAS  PubMed  Google Scholar 

  • Pu C, Zhan A. Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions. 2017;19(7):2015–28.

    Google Scholar 

  • Putnam HM, Gates RD. Preconditioning in the reef-building coral Pocillopora Damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol. 2015;218(Pt 15):2365–72.

    PubMed  Google Scholar 

  • Putnam HM, Davidson JM, Gates RD. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl. 2016;9(9):1165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128(4):655–68.

    CAS  PubMed  Google Scholar 

  • Reddy PC, Ubhe S, Sirwani N, Lohokare R, Galande S. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra. Zoology. 2017;123:53–63.

    PubMed  Google Scholar 

  • Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun. 2007;352(1):188–92.

    CAS  PubMed  Google Scholar 

  • Rivera-Casas C, González-Romero R, Cheema MS, Ausió J, Eirín-López JM. The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin. Epigenetics. 2016a;11(6):415–25.

    PubMed  PubMed Central  Google Scholar 

  • Rivera-Casas C, González-Romero R, Vizoso-Vazquez Á, Cheema MS, Esperanza Cerdán M, Méndez J, Ausió J, Eirin-Lopez JM. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus. Biochem Cell Biol. 2016b;94(5):480–90.

    CAS  PubMed  Google Scholar 

  • Rivera-Casas C, González-Romero R, Garduño RA, Cheema MS, Ausio J, Eirin-Lopez JM. Molecular and biochemical methods useful for the epigenetic characterization of chromatin-associated proteins in bivalve molluscs. Front Physiol. 2017;8:490.

    PubMed  PubMed Central  Google Scholar 

  • Riviere G, Guan-Chung W, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the oyster C. Gigas. Marine Biotechnol. 2013;15(6):739–53.

    CAS  Google Scholar 

  • Riviere G, He Y, Tecchio S, Crowell E, Gras M, Sourdaine P, Guo X, Favrel P. Dynamics of DNA methylomes underlie oyster development. PLoS Genet. 2017;13(6):e1006807.

    PubMed  PubMed Central  Google Scholar 

  • Roberts SB, Gavery MR. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? Front Physiol. 2012;2. https://doi.org/10.3389/fphys.2011.00116.

  • Rosic N, Kaniewska P, Chan C-KK, Ling EYS, Edwards D, Dove S, Hoegh-Guldberg O. Early transcriptional changes in the reef-building coral Acropora Aspera in response to thermal and nutrient stress. BMC Genomics. 2014;15:1052.

    PubMed  PubMed Central  Google Scholar 

  • Sano H, Kim H-J. Transgenerational epigenetic inheritance in plants. In: Grafi G, Ohad N, editors. Epigenetic memory and control in plants. Signaling and communication in plants, vol. 18. Berlin, Heidelberg: Springer; 2013. p. 233–53.

    Google Scholar 

  • Sathyan N, Philip R, Chaithanya ER, Anil Kumar PR. Identification and molecular characterization of Molluskin, a histone-H2A-derived antimicrobial peptide from molluscs. ISRN Mol Biol. 2012;2012:1–6.

    Google Scholar 

  • Seaman W. Artificial habitats and the restoration of degraded marine ecosystems and fisheries. Hydrobiologia. 2007;580(1):143–55.

    Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF. Developing the science of reintroduction biology. Conserv Biol. 2007;21(2):303–12.

    PubMed  Google Scholar 

  • Segawa T, Kobayashi Y, Inamoto S, Suzuki M, Endoh T, Itou T. Identification and expression profiles of microRNA in dolphin. Zoolog Sci. 2016;33(1):92–7.

    CAS  PubMed  Google Scholar 

  • Sgrò CM, Terblanche JS, Hoffmann AA. What can plasticity contribute to insect responses to climate change? Annu Rev Entomol. 2016;61:433–51.

    PubMed  Google Scholar 

  • Shao C, Li Q, Chen S, Zhang P, Lian J, Qiaomu H, Sun B, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24(4):604–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    CAS  PubMed  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Hallett M, Trasler J, Peters AH, Kimmins S. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350(6261):aab2006. https://doi.org/10.1126/science.aab2006.

    Article  CAS  PubMed  Google Scholar 

  • Simonet NG, Reyes M, Nardocci G, Molina A, Alvarez M. Epigenetic regulation of the ribosomal Cistron seasonally modulates enrichment of H2A.Z and H2A.Zub in response to different environmental inputs in carp (Cyprinus Carpio). Epigenetics Chromatin. 2013;6(1):22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skjærven KH, Hamre K, Penglase S, Finn RN, Olsvik PA. Thermal stress alters expression of genes involved in one carbon and DNA methylation pathways in Atlantic cod embryos. Comp Biochem Physiol A Mol Integr Physiol. 2014;173C:17–27.

    PubMed  Google Scholar 

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    CAS  PubMed  Google Scholar 

  • Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs. 2010;8(4):1213–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song K, Li L, Zhang G. The association between DNA methylation and exon expression in the Pacific oyster Crassostrea gigas. PLoS One. 2017;12(9):e0185224.

    PubMed  PubMed Central  Google Scholar 

  • Stuart-Smith J, Jepson P. Persistent threats need persistent counteraction: responding to PCB pollution in marine mammals. Mar Policy. 2017;84:69–75.

    Google Scholar 

  • Suárez-Ulloa V, Fernández-Tajes J, Aguiar-Pulido V, Rivera-Casas C, González-Romero R, Ausio J, Méndez J, Dorado J, Eirín-López JM. The CHROMEVALOA database: a resource for the evaluation of Okadaic acid contamination in the marine environment based on the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis. Mar Drugs. 2013;11(3):830–41.

    PubMed  PubMed Central  Google Scholar 

  • Suarez-Ulloa V, González-Romero R, Eirin-Lopez JM. Environmental epigenetics: a promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. Mar Pollut Bull. 2015;98(1–2):5–13.

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007;17(5):625–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A. 1990;87(12):4692–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Henikoff S. Environmental responses mediated by histone variants. Trends Cell Biol. 2014;24(11):642–50.

    CAS  PubMed  Google Scholar 

  • Tanabe S, Mori T, Tatsukawa R, Miyazaki N. Global pollution of marine mammals by PCBs, DDTs, and HCHs (BHCs). Chemosphere. 1983;12:1269–75.

    CAS  Google Scholar 

  • Taylor BL, Rojas-Bracho L, Moore J, Jaramillo-Legorreta A, Ver Hoef JM, Cardenas-Hinojosa G, Nieto-Garcia E, et al. Extinction is imminent for Mexico’s endemic porpoise unless fishery bycatch is eliminated. Conserv Lett. 2016;10(5):588–95.

    Google Scholar 

  • Towle EK, Baker AC, Langdon C. Preconditioning to high CO2 exacerbates the response of the Caribbean branching coral Porites Porites to high temperature stress. Mar Ecol Prog Ser. 2016;546:75–84.

    CAS  Google Scholar 

  • Trautner JH, Reiser S, Blancke T, Unger K, Wysujack K. Metamorphosis and transition between developmental stages in European eel (Anguilla Anguilla, L.) involve epigenetic changes in DNA methylation patterns. Comp Biochem Physiol Part D Genomics Proteomics. 2017;22:139–45.

    CAS  PubMed  Google Scholar 

  • Tricker PJ. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. Front Plant Sci. 2015;6:699.

    PubMed  PubMed Central  Google Scholar 

  • Tse AC-K, Li J-W, Wang SY, Chan T-F, Lai KP, Rudolf Shiu-Sun W. Hypoxia alters testicular functions of marine medaka through microRNAs regulation. Aquat Toxicol. 2016;180:266–73.

    CAS  PubMed  Google Scholar 

  • Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22(9):836–45.

    CAS  PubMed  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol. 1997;17(3):1469–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Holde KE. Chromatin. Springer series in molecular biology. New York, NY: Springer; 1989.

    Google Scholar 

  • Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR. Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int. 2009;35(4):700–6.

    CAS  PubMed  Google Scholar 

  • Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene. 2006;385:111–21.

    CAS  PubMed  Google Scholar 

  • Verhoeven KJF, vonHoldt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016;25(8):1631–8.

    PubMed  Google Scholar 

  • Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol. 2015;25(3):137–47.

    CAS  PubMed  Google Scholar 

  • Vignet C, Joassard L, Lyphout L, Guionnet T, Goubeau M, Le Menach K, Brion F, et al. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant. Environ Sci Pollut Res Int. 2015;22(21):16371–83.

    CAS  PubMed  Google Scholar 

  • Viricel A, Rosel PE. Hierarchical population structure and habitat differences in a highly mobile marine species: the Atlantic spotted dolphin. Mol Ecol. 2014;23(20):5018–35.

    PubMed  Google Scholar 

  • Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  • Wan Y, Saleem RA, Ratushny AV, Roda O, Smith JJ, Lin C-H, Chiang J-H, Aitchison JD. Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol. 2009;29(9):2346–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang C, Zhang J, Chen Y, Zuo Z. DNA hypomethylation induced by tributyltin, triphenyltin, and a mixture of these in Sebastiscus marmoratus liver. Aquat Toxicol. 2009;95(2):93–8.

    CAS  PubMed  Google Scholar 

  • Warner DA, Uller T, Shine R. Transgenerational sex determination: the embryonic environment experienced by a male affects offspring sex ratio. Sci Rep. 2013;3:2709.

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38(3):465–75.

    CAS  PubMed  Google Scholar 

  • Xu F, Wang X, Feng Y, Huang W, Wang W, Li L, Fang X, Que H, Zhang G. Identification of conserved and novel microRNAs in the Pacific oyster Crassostrea gigas by deep sequencing. PLoS One. 2014;9(8):e104371.

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, Zhao Y, et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep. 2015;5:15145.

    PubMed  PubMed Central  Google Scholar 

  • Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, et al. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci. 2008;105(2):605–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.

    CAS  PubMed  Google Scholar 

  • Zhang R, Zhang L, Wenqiang Y. Genome-wide expression of non-coding RNA and global chromatin modification: figure 1. Acta Biochim Biophys Sin. 2011;44(1):40–7.

    CAS  Google Scholar 

  • Zhang X, Li H, Burnett JC, Rossi JJ. The role of antisense long noncoding RNA in small RNA-triggered gene activation. RNA. 2014;20(12):1916–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci. 2016a;6:45. https://doi.org/10.1186/s13578-016-0109-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yu H, Kong L, Liu S, Li Q. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep. 2016b;6:22687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature. 2008;456(7218):125–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (IOS 1810981 awarded to JEL, and HRD 1547798 awarded to Florida International University as part of the Centers of Research Excellence in Science and Technology Program). This is contribution 87 from the Center for Coastal Oceans Research in the Institute for Water and Environment at Florida International University. Additional support was provided by funds from the Fundacion Ramon Areces (CRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Eirin-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V., Eirin-Lopez, J.M. (2018). Environmental Epigenomics and Its Applications in Marine Organisms. In: Oleksiak, M., Rajora, O. (eds) Population Genomics: Marine Organisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_28

Download citation

Publish with us

Policies and ethics