Skip to main content

Mining Natural Compounds to Target WNT Signaling: Land and Sea Tales

  • Chapter
  • First Online:
Pharmacology of the WNT Signaling System

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 269))

Abstract

WNT signaling plays paramount roles in organism development, physiology, and disease, representing a highly attractive target for drug development. However, no WNT-modulating drugs have been approved, with several candidates trudging through the early clinical trials. This delay instigates alternative approaches to discover WNT-modulating drugs. Natural products were the source of therapeutics for centuries, but the chemical diversity they offer, especially when looking at different taxonomic groups and habitats, is still to a large extent unexplored. These considerations urge researchers to screen natural compounds for the WNT-modulatory activities. Since several reviews on such endeavors exist, we here have attempted to present these efforts as “Land and sea tales” (citing the book title by Rudyard Kipling) superimposing them onto the traditional pipeline of drug discovery and early development. In doing so, we illustrate each step of the pipeline with case studies stemming from our own research. It will become obvious that several steps of the pipeline need to be modified when applied to natural products rather than to synthetic libraries. Yet the main message of this chapter is that natural compounds represent a powerful source for the WNT signaling modulators and can be developed towards drug candidates against WNT-dependent maladies.

“Land and sea tales” is a book by Rudyard Kipling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk B, Salminen J-P, Smolander A, Kitunen V (2012) Precipitation of proteins by tannins: effects of concentration, protein/tannin ratio and pH. Int J Food Sci Technol 47:875–878

    CAS  Google Scholar 

  • Adrianov AV (2004) Current problems in marine biodiversity studies. Russ J Mar Biol 30:S1–S16

    Google Scholar 

  • Adrianov AV, Odintsov VS (2017) Глубоководные исследования Национального научного центра морской биологии ДВО РАН в северо-западной части Тихого океана. Технические проблемы освоения Мирового океана 7:13–15

    Google Scholar 

  • Afiyatullov SS, Kalinovskii AI, Pivkin MV, Dmitrenok PS, Kuznetsova TA (2005) Alkaloids from the marine isolate of the fungus Aspergillus fumigatus. Chem Nat Compd 41:236–238

    CAS  Google Scholar 

  • Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL (2019) Towards the first targeted therapy for triple-negative breast cancer: repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett 449:45–55

    CAS  PubMed  Google Scholar 

  • Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee DK, Ellard GA, Gammon PT, Waters MF (1974) Some observations on the pharmacology of clofazimine (B663). Am J Trop Med Hyg 23:1110–1115

    CAS  PubMed  Google Scholar 

  • Barry VC (1951) An organic chemist’s approach to the chemotherapy of tuberculosis. Ir J Med Sci 26:453–473

    Google Scholar 

  • Barry VC, Belton JG, Conalty ML, Denneny JM, Edward DW, O’Sullivan JF, Twomey D, Winder F (1957) A new series of phenazines (Rimino-compounds) with high antituberculosis activity. Nature 179:1013–1015

    CAS  PubMed  Google Scholar 

  • Barteselli A, Casagrande M, Basilico N, Parapini S, Rusconi CM, Tonelli M, Boido V, Taramelli D, Sparatore F, Sparatore A (2015) Clofazimine analogs with antileishmanial and antiplasmodial activity. Bioorg Med Chem 23:55–65

    CAS  PubMed  Google Scholar 

  • Blagodatski A, Poteryaev D, Katanaev VL (2014) Targeting the Wnt pathways for therapies. Mol Cell Ther 2:28

    PubMed  PubMed Central  Google Scholar 

  • Blagodatski A, Cherepanov V, Koval A, Kharlamenko VI, Khotimchenko YS, Katanaev VL (2017) High-throughput targeted screening in triple-negative breast cancer cells identifies Wnt-inhibiting activities in Pacific brittle stars. Sci Rep 7:11964

    PubMed  PubMed Central  Google Scholar 

  • Blagodatski A, Klimenko A, Jia L, Katanaev VL (2020) Small molecule Wnt pathway modulators from natural sources: history, state of the art and perspectives. Cell 9:589

    CAS  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34:235–294

    CAS  PubMed  Google Scholar 

  • Bogachek MV, Park JM, De Andrade JP, Kulak MV, White JR, Wu T, Spanheimer PM, Bair TB, Olivier AK, Weigel RJ (2015) A novel animal model for locally advanced breast cancer. Ann Surg Oncol 22:866–873

    PubMed  Google Scholar 

  • Bordonaro M, Venema K, Putri AK, Lazarova D (2014) Approaches that ascertain the role of dietary compounds in colonic cancer cells. World J Gastrointest Oncol 6:1–10

    PubMed  PubMed Central  Google Scholar 

  • Borzykh OG, Zvereva LV (2018) Fungal assemblages associated with commercial bivalve species in coastal waters of the Sea of Japan, Russia. Bot Mar 61:355–363

    Google Scholar 

  • Brandt A, Malyutina MV (2015) The German-Russian deep-sea expedition KuramBio (Kurile Kamchatka biodiversity studies) on board of the RV Sonne in 2012 following the footsteps of the legendary expeditions with RV Vityaz introduction, vol 111. Deep-Sea Research Part II-Topical Studies in Oceanography, pp 1–9

    Google Scholar 

  • Bugter JM, Fenderico N, Maurice MM (2021) Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 21:5–21

    CAS  PubMed  Google Scholar 

  • Bunn PA Jr (2001) Triplet combination chemotherapy and targeted therapy regimens. Oncology (Williston Park) 15:26–32

    Google Scholar 

  • Carreira-Barbosa F, Nunes SC (2020) Wnt signaling: paths for cancer progression. Adv Exp Med Biol 1219:189–202

    CAS  PubMed  Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Marine natural products. Nat Prod Rep 36:122–173

    CAS  PubMed  Google Scholar 

  • Chen J, Liu T-Y, Peng H-T, Wu Y-Q, Zhang L-L, Lin X-H, Lai Y-H (2018) Up-regulation of Wnt7b rather than Wnt1, Wnt7a, and Wnt9a indicates poor prognosis in breast cancer. Int J Clin Exp Pathol 11:4552–4561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conte M, Fontana E, Nebbioso A, Altucci L (2020) Marine-derived secondary metabolites as promising epigenetic bio-compounds for anticancer therapy. Mar Drugs 19

    Google Scholar 

  • Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    CAS  Google Scholar 

  • Cruz R, Bührer-Sékula S, Penna MLF, Penna GO, Talhari S (2017) Leprosy: current situation, clinical and laboratory aspects, treatment history and perspective of the uniform multidrug therapy for all patients. An Bras Dermatol 92:761–773

    PubMed  PubMed Central  Google Scholar 

  • Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32:2866–2868

    PubMed  PubMed Central  Google Scholar 

  • Dyshlovoy SA, Honecker F (2019) Marine compounds and cancer: the first two decades of XXI century. Mar Drugs 18:20

    PubMed Central  Google Scholar 

  • Egger-Adam D, Katanaev VL (2010) The trimeric G protein go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 239:168–183

    CAS  PubMed  Google Scholar 

  • Ehmsen S, Ditzel HJ (2021) Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells 39:133–143

    CAS  PubMed  Google Scholar 

  • Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D, Stainier DYR, Garcia-Pino A, Vanhollebeke B (2018) A molecular mechanism for Wnt ligand-specific signaling. Science 361

    Google Scholar 

  • Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, Beckmann JS, Joseph JM, Mühlethaler-Mottet A, Gross N (2009) The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene 28:2245–2256

    CAS  PubMed  Google Scholar 

  • Gao J, Fan L, Zhao L, Su Y (2021) The interaction of notch and Wnt signaling pathways in vertebrate regeneration. Cell Regen 10:11

    PubMed  PubMed Central  Google Scholar 

  • Ghosh N, Hossain U, Mandal A, Sil PC (2019) The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci 1443:54–74

    PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    CAS  PubMed  Google Scholar 

  • Giordano D, Coppola D, Russo R, Denaro R, Giuliano L, Lauro FM, di Prisco G, Verde C (2015) Marine microbial secondary metabolites: pathways, evolution and physiological roles. Adv Microb Physiol 66:357–428

    CAS  PubMed  Google Scholar 

  • Gould SE, Low JA, Marsters JC Jr, Robarge K, Rubin LL, de Sauvage FJ, Sutherlin DP, Wong H, Yauch RL (2014) Discovery and preclinical development of vismodegib. Expert Opin Drug Discovery 9:969–984

    CAS  Google Scholar 

  • GTEx Consortium (2015) Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660

    PubMed Central  Google Scholar 

  • Harada H, Noro T, Kamei Y (1997) Selective antitumor activity in vitro from marine algae from Japan coasts. Biol Pharm Bull 20:541–546

    CAS  PubMed  Google Scholar 

  • Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620

    CAS  PubMed  Google Scholar 

  • Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, Chen H, Fang J, Zhou F, Sun J, Yang X (2019) WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal 17:109

    PubMed  PubMed Central  Google Scholar 

  • Johnson DH (2006) Targeted therapies in combination with chemotherapy in non-small cell lung cancer. Clin Cancer Res 12:4451s–4457s

    CAS  PubMed  Google Scholar 

  • Katanaev V (2012) US8119354: cell-free assay product and method of use thereof for measuring activity of frizzled receptors. Universitaet Konstanz, Konstanz

    Google Scholar 

  • Katanaev VL, Buestorf S (2009) Frizzled proteins are bona fide G protein-coupled receptors. Nat Preced. https://doi.org/10.1038/npre.2009.2765.1

  • Katanaev VL, Koval A (2021) In: USPTO (ed) Pyrazole derivatives as inhibitors of the wnt signalling pathway, patent application. Université de Lausanne, Lausanne

    Google Scholar 

  • Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A (2005) Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120:111–122

    CAS  PubMed  Google Scholar 

  • Katanaev VL, Di Falco S, Khotimchenko Y (2019) The anticancer drug discovery potential of marine invertebrates from Russian Pacific. Mar Drugs 17:474

    CAS  PubMed Central  Google Scholar 

  • Khotimchenko YS (2010a) The antitumor properties of nonstarch polysaccharides: carrageenans, alginates, and pectins. Russ J Mar Biol 36:401–412

    CAS  Google Scholar 

  • Khotimchenko YS (2010b) Antitumor properties of nonstarch polysaccharides: fucoidans and chitosans. Russ J Mar Biol 36: 321–330

    Google Scholar 

  • Khotimchenko M, Tiasto V, Kalitnik A, Begun M, Khotimchenko R, Leonteva E, Bryukhovetskiy I, Khotimchenko Y (2020) Antitumor potential of carrageenans from marine red algae. Carbohydr Polym 246:116568

    CAS  PubMed  Google Scholar 

  • Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176:2911–2920

    PubMed  PubMed Central  Google Scholar 

  • Klimenko A, Huber R, Marcourt L, Chardonnens E, Koval A, Khotimchenko YS, Ferreira Queiroz E, Wolfender JL, Katanaev VL (2021) A cytotoxic porphyrin from North Pacific brittle star Ophiura sarsii. Mar Drugs 19:11. https://doi.org/10.3390/md19010011

    Article  CAS  Google Scholar 

  • Klochkova NG (1998) An annotated bibliography if marine macroalgae on northwest coast of the Bering Sea and the Southeast Kamchatka: the first revision of Flora. Algae 13:375–418

    Google Scholar 

  • Kong DX, Jiang YY, Zhang HY (2010) Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15:884–886

    PubMed  Google Scholar 

  • Koval A, Katanaev VL (2011) Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J 433:435

    CAS  PubMed  Google Scholar 

  • Koval A, Katanaev VL (2012) Platforms for high-throughput screening of Wnt/Frizzled antagonists. Drug Discov Today 17:1316–1322

    CAS  PubMed  Google Scholar 

  • Koval A, Katanaev VL (2018) Dramatic dysbalancing of the Wnt pathway in breast cancers. Sci Rep 8:7329

    PubMed  PubMed Central  Google Scholar 

  • Koval AV, Vlasov P, Shichkova P, Khunderyakova S, Markov Y, Panchenko J, Volodina A, Kondrashov FA, Katanaev VL (2014) Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem Pharmacol 87:571–578

    CAS  PubMed  Google Scholar 

  • Koval A, Ahmed K, Katanaev VL (2016) Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis. Biochem J 473:371–381

    CAS  PubMed  Google Scholar 

  • Koval A, Pieme CA, Queiroz EF, Ragusa S, Ahmed K, Blagodatski A, Wolfender JL, Petrova TV, Katanaev VL (2018) Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett 435:110–120

    CAS  PubMed  Google Scholar 

  • Koval A, Bassanini I, Xu J, Tonelli M, Boido V, Sparatore F, Amant F, Annibali D, Leucci E, Sparatore A, Katanaev VL (2021) Optimization of the clofazimine structure leads to a highly water-soluble C3-aminopyridinyl riminophenazine endowed with improved anti-Wnt and anti-cancer activity in vitro and in vivo. Eur J Med Chem 222:113562

    CAS  PubMed  Google Scholar 

  • Larasati Y, Boudou C, Koval A, Katanaev VL (2021) Unlocking the Wnt pathway: therapeutic potential of selective targeting FZD7 in cancer. Drug Discov Today invited review submitted

    Google Scholar 

  • Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, Machon O, Korinek V, Choo E, Diaz D, Merchant M, Polakis P, Holsworth DD, Krauss S, Costa M (2013) A novel Tankyrase small-molecule inhibitor suppresses APC mutation–driven colorectal tumor growth. Cancer Res 73:3132–3144

    CAS  PubMed  Google Scholar 

  • Levis W, Rendini T (2017) Clofazimine mechanisms of action in mycobacteria, HIV, and cancer. J Infect Dis 215:1488

    CAS  PubMed  Google Scholar 

  • Li X, Lin Z, Zhang B, Guo L, Liu S, Li H, Zhang J, Ye Q (2016) β-Elemene sensitizes hepatocellular carcinoma cells to oxaliplatin by preventing oxaliplatin-induced degradation of copper transporter 1. Sci Rep 6:21010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lovell JF, Yoon J, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17(11):657–674

    PubMed  Google Scholar 

  • Liu Z, Sun L, Cai Y, Shen S, Zhang T, Wang N, Wu G, Ma W, Li S-T, Suo C, Hao Y, Jia W-D, Semenza GL, Gao P, Zhang H (2021) Hypoxia-induced suppression of alternative splicing of MBD2 promotes breast cancer metastasis via activation of FZD1. Cancer Res 81:1265–1278

    CAS  PubMed  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  PubMed  Google Scholar 

  • Loewe S, Muischnek H (1926) Über Kombinationswirkungen. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 114:313–326

    CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malyutina MV, Brandt A (2013) Introduction to SoJaBio (Sea of Japan Biodiversity Studies), vol 86–87. Deep-Sea Research Part II-Topical Studies in Oceanography, pp 1–9

    Google Scholar 

  • Malyutina MV, Chernyshev AV, Brandt A (2018) Introduction to the SokhoBio (Sea of Okhotsk Biodiversity Studies) expedition 2015, vol 154. Deep-Sea Research Part II-Topical Studies in Oceanography, pp 1–9

    Google Scholar 

  • Mandal S, Gamit N, Varier L, Dharmarajan A, Warrier S (2021) Inhibition of breast cancer stem-like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA-499a-5p. Life Sci 265:118854

    CAS  PubMed  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12:1066–1101

    PubMed  PubMed Central  Google Scholar 

  • Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11:937–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y) 3:651–657

    Google Scholar 

  • Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    CAS  PubMed  Google Scholar 

  • Morrell NT, Leucht P, Zhao L, Kim JB, ten Berge D, Ponnusamy K, Carre AL, Dudek H, Zachlederova M, McElhaney M, Brunton S, Gunzner J, Callow M, Polakis P, Costa M, Zhang XM, Helms JA, Nusse R (2008) Liposomal packaging generates Wnt protein with in vivo biological activity. PLoS One 3:e2930

    PubMed  PubMed Central  Google Scholar 

  • Myer MS, Van Rensburg CEJ (1996) Chemosensitizing interactions of clofazimine and B669 with human K562 erythroleukaemia cells with varying levels of expression of P-glycoprotein. Cancer Lett 99:73–78

    CAS  PubMed  Google Scholar 

  • Nguyen TL, Rusten A, Bugge MS, Malterud KE, Diallo D, Paulsen BS, Wangensteen H (2016) Flavonoids, gallotannins and ellagitannins in Syzygium guineense and the traditional use among Malian healers. J Ethnopharmacol 192:450–458

    CAS  PubMed  Google Scholar 

  • Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D (2020) Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar Drugs 18:145

    CAS  PubMed Central  Google Scholar 

  • O’Connor R, O’Sullivan JF, O’Kennedy R (1995) The pharmacology, metabolism, and chemistry of clofazimine. Drug Metab Rev 27:591–614

    PubMed  Google Scholar 

  • Olivon F, Allard PM, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias LF, Cachet X, Marcourt L, Roussi F, Katanaev VL, Touboul D, Wolfender JL, Litaudon M (2017) Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 12:2644–2651

    CAS  PubMed  Google Scholar 

  • Park JG, Lee SK, Hong IG, Kim HS, Lim KH, Choe KJ, Kim WH, Kim YI, Tsuruo T, Gottesman MM (1994) MDR1 gene expression: its effect on drug resistance to doxorubicin in human hepatocellular carcinoma cell lines. J Natl Cancer Inst 86:700–705

    CAS  PubMed  Google Scholar 

  • Pieme CA, Ngoupayo J, Nkoulou CH, Moukette BM, Nono BL, Moor VJ, Minkande JZ, Ngogang JY (2014) Syzyguim guineense extracts show antioxidant activities and beneficial activities on oxidative stress induced by ferric chloride in the liver homogenate. Antioxidants (Basel) 3:618–635

    Google Scholar 

  • Pivkin M (2000) Filamentous fungi associated with holothurians from the sea of Japan, off the primorye coast of Russia. Biol Bull 198:101–109

    CAS  PubMed  Google Scholar 

  • Plenge RM (2016) Disciplined approach to drug discovery and early development. Sci Transl Med 8:349ps15

    PubMed  Google Scholar 

  • Pohl SG, Brook N, Agostino M, Arfuso F, Kumar AP, Dharmarajan A (2017) Wnt signaling in triple-negative breast cancer. Oncogenesis 6:e310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5

    Google Scholar 

  • Purvanov V, Koval A, Katanaev VL (2010) A direct and functional interaction between Go and Rab5 during G protein-coupled receptor signaling. Sci Signal 3:ra65

    PubMed  Google Scholar 

  • Ramakrishnan AB, Cadigan KM (2017) Wnt target genes and where to find them. F1000Res 6:746

    PubMed  PubMed Central  Google Scholar 

  • Rex MA, Etter RJ (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge

    Google Scholar 

  • Ruiz-Torres V, Encinar JA, Herranz-Lopez M, Perez-Sanchez A, Galiano V, Barrajon-Catalan E, Micol V (2017) An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 22(7):1037

    PubMed Central  Google Scholar 

  • Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200

    CAS  PubMed  Google Scholar 

  • Serafino A, Sferrazza G, Colini Baldeschi A, Nicotera G, Andreola F, Pittaluga E, Pierimarchi P (2017) Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases. Expert Opin Drug Discovery 12:169–186

    CAS  Google Scholar 

  • Serafino A, Giovannini D, Rossi S, Cozzolino M (2020) Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discovery 15:803–822

    CAS  Google Scholar 

  • Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53(Suppl 2):S310–S329

    PubMed  Google Scholar 

  • Shaw HV, Koval A, Katanaev VL (2019a) A high-throughput assay pipeline for specific targeting of frizzled GPCRs in cancer. Methods Cell Biol 149:57–75

    CAS  PubMed  Google Scholar 

  • Shaw HV, Koval A, Katanaev VL (2019b) Targeting the Wnt signalling pathway in cancer: prospects and perils. Swiss Med Wkly 149:w20129

    CAS  PubMed  Google Scholar 

  • Shen D-Y, Zhang W, Zeng X, Liu C-Q (2013) Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci 104:1303–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi QW, Su XH, Kiyota H (2008) Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev 108:4295–4327

    CAS  PubMed  Google Scholar 

  • Simon A, Kourie HR, Kerger J (2017) Is there still a role for cytotoxic chemotherapy after targeted therapy and immunotherapy in metastatic melanoma? A case report and literature review. Chin J Cancer 36:10

    PubMed  PubMed Central  Google Scholar 

  • Sirenko BI (1994) Biological diversity of invertebrates in Far Eastern seas of Russia Bridges of the science between North America and Russian Far East. 45-th arctic science conference, Anchorage, Alaska, Dalnauka, p 28

    Google Scholar 

  • Sirenko BI (2013) Check-list of species of free-living invertebrates of the Russian Far Eastern seas. Explorations of the fauna of the seas, vol 75 (83). Russian Academy of Sciences, Zoological Institute, St. Petersburg, pp. 258

    Google Scholar 

  • Smith RB (1972) Clofazimine (B663, Geigy) in leprosy reactions. Australas J Dermatol 13:31–35

    CAS  PubMed  Google Scholar 

  • Smith TJ (2011) Green tea polyphenols in drug discovery – a success or failure? Expert Opin Drug Discovery 6:589–595

    CAS  Google Scholar 

  • Snelgrove PV (2016) An ocean of discovery: biodiversity beyond the census of marine life. Planta Med 82:790–799

    CAS  PubMed  Google Scholar 

  • Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145

    Google Scholar 

  • Stonik VA (2016) Исследования природных соединений – путь к новым лекарствам. Вестник Российской Академии Наук 86:557/565

    Google Scholar 

  • Stonik VA, Fedorov SN (2014) Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 12:636–671

    PubMed  PubMed Central  Google Scholar 

  • Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, Moodley S, Mgaga Z, Tapley A, Bester LA, Singh S, Grosset JH, Almeida DV (2015) Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother 59:3042–3051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomczak K, Czerwinska P, Wiznerowicz M (2015) The cancer genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19:A68–A77

    Google Scholar 

  • Trieu J, Newman DJ, Glaser KB, Mayer AM (2018) The marine pharmacology and pharmaceuticals pipeline in 2017. FASEB J 32:702.2–702.2

    Google Scholar 

  • van Rensburg CE, Joone GK, O’Sullivan JF (2000) Clofazimine and B4121 sensitize an intrinsically resistant human colon cancer cell line to P-glycoprotein substrates. Oncol Rep 7:193–195

    PubMed  Google Scholar 

  • Verkaar F, Zaman GJR (2011) New avenues to target Wnt/β-catenin signaling. Drug Discov Today 16:35–41

    CAS  PubMed  Google Scholar 

  • Wang YH, Imai Y, Shiseki M, Tanaka J, Motoji T (2018) Knockdown of the Wnt receptor Frizzled-1 (FZD1) reduces MDR1/P-glycoprotein expression in multidrug resistant leukemic cells and inhibits leukemic cell proliferation. Leuk Res 67:99–108

    CAS  PubMed  Google Scholar 

  • Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20:1394–1404

    CAS  PubMed  Google Scholar 

  • Xiu DH, Liu GF, Yu SN, Li LY, Zhao GQ, Liu L, Li XF (2019) Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. J Exp Clin Cancer Res 38:94

    PubMed  PubMed Central  Google Scholar 

  • Xu J, Koval A, Katanaev VL (2020) Beyond TNBC: repositioning of clofazimine against a broad range of Wnt-dependent cancers. Front Oncol 10

    Google Scholar 

  • Yadav BS, Sharma SC, Chanana P, Jhamb S (2014) Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol 5:125–133

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CC, Lau S, Somlo G, Yen Y (2011) FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 30(43):4437–4446

    CAS  PubMed  Google Scholar 

  • Yin P, Wang W, Gao J, Bai Y, Wang Z, Na L, Sun Y, Zhao C (2020) Fzd2 contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncol Res 28:273–284

    PubMed  PubMed Central  Google Scholar 

  • Zenkevich LA (1963) Biology of the seas of the U.S.S.R. Interscience Publishers, New York

    Google Scholar 

  • Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    CAS  PubMed  Google Scholar 

  • Zhang ZM, Wu JF, Luo QC, Liu QF, Wu QW, Ye GD, She HQ, Li BA (2016) Pygo2 activates MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/beta-catenin pathway. Oncogene 35:4787–4797

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The deep-sea and marine investigations described in this chapter were funded by the Ministry of Science and Higher Education of Russian Federation (grant 13.1902.21.0012 “Fundamental problems of investigation and preservation of deep-sea ecosystems of potentially ore-bearing regions of the Northwestern Pacific,” contract No. 075-15-2020-796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Katanaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katanaev, V.L., Blagodatski, A., Xu, J., Khotimchenko, Y., Koval, A. (2021). Mining Natural Compounds to Target WNT Signaling: Land and Sea Tales. In: Schulte, G., Kozielewicz, P. (eds) Pharmacology of the WNT Signaling System. Handbook of Experimental Pharmacology, vol 269. Springer, Cham. https://doi.org/10.1007/164_2021_530

Download citation

Publish with us

Policies and ethics