Skip to main content

PET and PET/CT in Treatment Planning

  • Chapter
  • First Online:
  • 1754 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Positron emission tomography (PET) is a major advance in lung cancer imaging and is having an increasing impact on the management of patients with non-small cell lung cancer who are candidates for potentially-curative treatment with radiotherapy. PET imaging, using 18F-flurodeoxyglucose as the tracer, and more recently in the form of FDG-PET/CT is now the most important single imaging modality for staging, patient selection and radiotherapy planning in NSCLC. If scans are acquired under appropriate conditions and the patient is positioned for radiotherapy, a single scan can be used for all of these purposes. In this chapter the role of PET and PET/CT in staging, patient selection and radiotherapy planning are discussed. Additionally, the use of FDG-PET for response assessment is described and finally the potential value of PET tracers other than FDG is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ball D, Smith J, Wirth A, Mac Manus M (2002) Failure of T stage to predict survival in patients with non-small-cell lung cancer treated by radiotherapy with or without concomitant chemotherapy. Int J Radiat Oncol Biol Phys 54:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Bayne M et al (2010) Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 77:1151–7

    Article  PubMed  Google Scholar 

  • Biehl KJ et al (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47:1808–1812

    PubMed  Google Scholar 

  • Binns DS et al (2011) Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 38:642–650

    Article  PubMed  CAS  Google Scholar 

  • Blum R et al (2004) Impact of positron emission tomography on the management of patients with small-cell lung cancer: preliminary experience. Am J Clin Oncol 27:164–171

    Article  PubMed  Google Scholar 

  • Bowden P et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573

    Article  PubMed  Google Scholar 

  • Bradley JD et al (2004) Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J Clin Oncol 22:3248–3254

    Article  PubMed  Google Scholar 

  • Buck AK et al (2010) Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol 38:6–17

    Article  PubMed  Google Scholar 

  • Caldwell CB et al (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51:923–931

    Article  PubMed  CAS  Google Scholar 

  • Dahele M et al (2008) Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer. Curr Oncol 15:62–69

    Article  PubMed  CAS  Google Scholar 

  • Deniaud-Alexandre E et al (2005) Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 63:1432–1441

    Article  PubMed  Google Scholar 

  • De Ruysscher D et al (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77:5–10

    Article  PubMed  Google Scholar 

  • Dunagan D et al (2001) Staging by positron emission tomography predicts survival in patients with non-small cell lung cancer. Chest 119:333–339

    Article  PubMed  CAS  Google Scholar 

  • Eschmann SM et al (2007) Impact of staging with 18F-FDG-PET on outcome of patients with stage III non-small cell lung cancer: PET identifies potential survivors. Eur J Nucl Med Mol Imaging 34:54–59

    Article  PubMed  CAS  Google Scholar 

  • Everitt S et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104

    Article  PubMed  Google Scholar 

  • Everitt S et al (2010) High rates of tumor growth and disease progression detected on serial pretreatment fluorodeoxyglucose-positron emission tomography/computed tomography scans in radical radiotherapy candidates with nonsmall cell lung cancer. Cancer 116:5030–5037

    Article  PubMed  Google Scholar 

  • Gould MK et al (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    Article  PubMed  Google Scholar 

  • Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M (2007) PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 48(Suppl 1):68S–77S

    PubMed  CAS  Google Scholar 

  • Hicks RJ (2009) Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med 50(Suppl 1):31S–42S

    Article  PubMed  CAS  Google Scholar 

  • Hicks RJ, Mac Manus MP (2003) 18F-FDG PET in candidates for radiation therapy: is it important and how do we validate its impact? J Nucl Med 44:30–32

    PubMed  Google Scholar 

  • Hicks RJ et al (2001) (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42:1596–1604

    PubMed  CAS  Google Scholar 

  • Higashi K et al (2000) FDG PET measurement of the proliferative potential of non-small cell lung cancer. J Nucl Med 41:85–92

    PubMed  CAS  Google Scholar 

  • Hong R, Halama J, Bova D, Sethi A, Emami B (2007) Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys 67:720–726

    Article  PubMed  Google Scholar 

  • Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24:3245–3251

    Article  PubMed  Google Scholar 

  • Koizumi M et al (2011) Uptake decrease of proliferative PET tracer FLT in bone marrow after carbon ion therapy in lung cancer. Mol Imaging Biol 13:577–582

    Article  PubMed  Google Scholar 

  • Kolodziejczyk M et al (2011) Impact of [(18)F]Fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys 80(4):1008–1114

    Article  PubMed  Google Scholar 

  • Lever AM, Henderson D, Ellis DA, Corris PA, Gilmartin JJ (1984) Radiation fibrosis mimicking local recurrence in small cell carcinoma of the bronchus. Br J Radiol 57:178–180

    Article  PubMed  CAS  Google Scholar 

  • Mac Manus MP et al (2010) Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys 80:1365–1371

    Article  PubMed  Google Scholar 

  • Mac Manus MP et al (2001) F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92:886–895

    Article  PubMed  CAS  Google Scholar 

  • Mac Manus MP et al (2002) Early mortality after radical radiotherapy for non-small-cell lung cancer: comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center. Int J Radiat Oncol Biol Phys 52:351–361

    Article  PubMed  Google Scholar 

  • Mac Manus MP et al (2003) Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21:1285–1292

    Article  PubMed  Google Scholar 

  • MacManus MR et al (2003) FDG-PET-detected extracranial metastasis in patients with non-small cell lung cancer undergoing staging for surgery or radical radiotherapy—survival correlates with metastatic disease burden. Acta Oncol 42:48–54

    Article  PubMed  Google Scholar 

  • MacManus M et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94

    Article  PubMed  Google Scholar 

  • Mah K et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    Article  PubMed  Google Scholar 

  • Mileshkin L et al (2011) Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine position emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res 17:3304–3315

    Article  PubMed  CAS  Google Scholar 

  • Munley MT et al (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23:105–114

    Article  PubMed  CAS  Google Scholar 

  • Nehmeh SA et al (2002) Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876–881

    PubMed  Google Scholar 

  • Nestle U et al (2006) Target volume definition for (18)F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 33:263–269

    Article  Google Scholar 

  • Nestle U et al (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  PubMed  CAS  Google Scholar 

  • Nestle U et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348

    PubMed  Google Scholar 

  • Pauleit D et al (2005) PET with O-(2–18F-Fluoroethyl)-l-Tyrosine in peripheral tumors: first clinical results. J Nucl Med 46:411–416

    PubMed  CAS  Google Scholar 

  • Pommier P et al (2010) Impact of (18)F-FDG PET on treatment strategy and 3D radiotherapy planning in non-small cell lung cancer: A prospective multicenter study. AJR Am J Roentgenol 195:350–355

    Article  PubMed  Google Scholar 

  • Reischl G et al (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J Pharm Pharm Sci 10:203–211

    PubMed  CAS  Google Scholar 

  • Sasaki M et al (2001) Comparison of MET-PET and FDG-PET for differentiation between benign lesions and malignant tumors of the lung. Ann Nucl Med 15:425–431

    Article  PubMed  CAS  Google Scholar 

  • Stroobants S, Verschakelen J, Vansteenkiste J (2003) Value of FDG-PET in the management of non-small cell lung cancer. Eur J Radiol 45:49–59

    Article  PubMed  Google Scholar 

  • Toloza EM, Harpole L, Detterbeck F, McCrory DC (2003) Invasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123:157S–166S

    Article  PubMed  Google Scholar 

  • Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75(Spec No):S24–S30

    PubMed  Google Scholar 

  • van Baardwijk A et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68:771–778

    Article  PubMed  Google Scholar 

  • van de Steene J et al (2002) Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol 62:37–49

    Article  PubMed  Google Scholar 

  • van Der Wel A et al (2005) Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 61:649–655

    Article  Google Scholar 

  • van Loon J et al (2008) 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 87:49–54

    Article  PubMed  Google Scholar 

  • Vanuytsel LJ et al (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  • Wurm RE et al (2006) Image guided respiratory gated hypofractionated stereotactic body radiation therapy (H-SBRT) for liver and lung tumors: initial experience. Acta Oncol 45:881–889

    Article  PubMed  CAS  Google Scholar 

  • Yaremko B et al (2005) Thresholding in PET images of static and moving targets. Phys Med Biol 50:5969–5982

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Mac Manus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mac Manus, M.P., Hicks, R.J. (2011). PET and PET/CT in Treatment Planning. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_300

Download citation

  • DOI: https://doi.org/10.1007/174_2011_300

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics