Skip to main content

Magnetite Nanoparticles Stabilized Under Physiological Conditions for Biomedical Application

  • Conference paper
  • First Online:
Colloids for Nano- and Biotechnology

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

Abstract

The biomedical application of water based magnetic fluids (MFs) is of great practical importance. Their colloidal stability under physiological conditions (blood pH ∼ 7.2–7.4 and salt concentration ∼0.15  M) and more in high magnetic field gradient is crucial. Magnetite or maghemite nanoparticles are used in general. In the present work, magnetite nanoparticles were stabilized with different compounds (citric acid (CA) and phosphate) and sodium oleate (NaO) as the most used surfactant in the stabilization of MFs. The adsorption and overcharging effect were quantified, and the enhancement in salt tolerance of stabilized systems was studied. Adsorption, electrophoretic mobility and dynamic light scattering (DLS) measurements were performed. The electrolyte tolerance was tested in coagulation kinetic measurements. Above the adsorption saturation, the nanoparticles are stabilized in a way of combined steric and electrostatic effects. The aim was to research these two important effects and demonstrate that none of them alone is enough. The phosphate was not able to stabilize the ferrofluid in spite of our expectation, but the other two additives proved to be effective stabilizing agents. The magnetite was well stabilized by the surface complexation of CA above pH ∼ 5, however, the salt tolerance of citrate stabilized MFs remained much below the concentration of physiological salt solution, and more the dissolution of magnetite nanocrystals was enhanced due to Fe-CA complexation in aqueous medium, which may cause problems in vivo. The oleate double layers were able to stabilize magnetite nanoparticles perfectly at pH ∼ 6 preventing particle aggregation effectively even in physiological salt solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halavaara J, Tervahartiala P, Isoniemi H, Höckerstedt K (2002) Efficacy of Sequential Use of Superparamagnetic Iron Oxide and Gadolinium in Liver MR Imaging. Acta Radiol 43:180–185, doi:10.1034/j.1600-0455.2002.430216.x

    Article  CAS  Google Scholar 

  2. Benderbous S, Corot C, Jacobs P, Bonnemain B (1996) Session 7 Superparamagnetic Agents: Physicochemical Characteristics and Preclinical Imaging Evaluation. Acad Radiol 3, Suppl. 2:292–294

    Google Scholar 

  3. Babincová M, Sourivong P, Leszczynska D, Babinec P (2000) Blood-specific whole-body electromagnetic hyperthermia. Med Hypotheses 55(6):459–460, doi: 10.1054/mehy.2000.1089

    Article  Google Scholar 

  4. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651, doi:10.1016/S0169-409X(02)00044-3

    Article  CAS  Google Scholar 

  5. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594, doi:10.1189/jlb.0205074

    Article  CAS  Google Scholar 

  6. Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 36:R198–R206, PII: S0022-3727(03)38650-4

    Article  CAS  Google Scholar 

  7. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. Top Rev, J Phys D: Appl Phys 36:R167–R181, PII: S0022-3727(03)40035-1

    Google Scholar 

  8. Bahadur D, Giri J (2003) Biomaterials and magnetism. Sadhana 28(3/4):639–656, doi: 10.1007/BF02706451

    Article  CAS  Google Scholar 

  9. Saiyed ZM, Telang SD, Ramchand CN (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn. Res Technol 1:2, doi:10.1186/1477-044X-1-2

    Google Scholar 

  10. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021, doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  11. Fauconnier N, Bée A, Roger J, Pons JN (1999) Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J Molec Liq 83:233–242, doi:10.1016/S0167-7322(99)00088-4

    Article  Google Scholar 

  12. Kallay N, Matijević E (1985) Adsorption at Solid/Solution Interfaces. 1. Interpretation of Surface Complexation of Oxalic and Citric Acids with Hematite. Langmuir 1:195–201

    Article  CAS  Google Scholar 

  13. Zhang Y, Kallay N, Matijević E (1985) Interaction of Metal Hydrous Oxides with Chelating Agents. 7. Hematite-Oxalic Acid and -Citric Acid Systems. Langmuir 1:201–206

    Article  CAS  Google Scholar 

  14. Goodarzi A, Sahoo Y, Swihart MT, Prasad PN (2004) Aqueous Ferrofluid of Citric Acid Coated Magnetite Particles. Mater Res Soc Symp Proc 789:6.6.1–6.6.6

    Google Scholar 

  15. Lacava ZGM, Azevedo RB, Martins EV, Lacava LM, Freitas MLL, Garcia VAP, Rébola CA, Lemos APC, Sousa MH, Tourinho FA, Da Silva MF, Morais PC (1999) Biological effects of magnetic fluids: toxicity studies. J Magn Magn Mater 201:431–434 Bibliographic Code: 1999JMMM..201..431L

    Article  CAS  Google Scholar 

  16. Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous Ferrofluid of Magnetite Nanoparticles: Fluorescence Labeling and Magnetophoretic Control. J Phys Chem B 109:3879–3885

    Article  CAS  Google Scholar 

  17. Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9, doi: 10.1016/0304-8853(95)00317-7

    Article  CAS  Google Scholar 

  18. Morais PC, Santos RL, Pimenta ACM, Azevedo RB, Lima ECD (2006) Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles. Thin Solid Films 515:266–270, doi:10.1016/j.tsf.2005.12.079

    Article  CAS  Google Scholar 

  19. Rãcuciu M, Creang DE, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E 21:117–121, doi:10.1140/epje/i2006-10051-y

    Article  CAS  Google Scholar 

  20. Scherer C, Figueiredo Neto AM (2005) Ferrofluids: Properties and Applications. Braz J Phys 35(3A):718–727, doi: 10.1590/S0103-97332005000400018

    Article  CAS  Google Scholar 

  21. Cornell RM, Schwertmann U (1996) The Iron Oxides. VCH, Weinheim

    Google Scholar 

  22. Hunter RJ (1987) Foundations of Colloid Science. Vol I, Clarendon Press, Oxford

    Google Scholar 

  23. Odenbach S (2003) Ferrofluids-magnetically controlled suspensions. Colloids Surf A 217:171–178, doi:10.1016/S0927-7757(02)00573-3

    Article  CAS  Google Scholar 

  24. Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interf Sci 295:115–123, doi:10.1016/j.jcis.2005.08.003

    Article  CAS  Google Scholar 

  25. Tombácz E (2003) Effect of environmental relevant organic complexants on the surface charge and the interaction of clay mineral and metal oxide particles. In: Bárány S (ed), Role of Interfaces in Environmental Protection. NATO ASI Series IV: Earth and Environmental Sciences Vol 24, Kluwer Academic Publisher, Dordrecht, pp 397–424

    Google Scholar 

  26. Vékás L, Bica D, Marinica O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58(3):217–228

    Google Scholar 

  27. Bica D, Vékás L, Avdeev MV, Marinica O, Balasoiu M, Garamus VM (2007) Sterically stabilized water based magnetic nanofluids: synthesis, structure and properties. J Magn Magn Mater 311(1):17–21, doi:10.1016/j.jmmm.2006.11.158

    Article  CAS  Google Scholar 

  28. Tombácz E, Illés E, Majzik A, Hajdú A, Rideg N, Szekeres M (2007) Ageing in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium. Croat Chem Acta 80:503–515

    Google Scholar 

  29. James RO, Parks GA (1982) Characterization of Aqueous Colloids by Their Electrical Double-Layer and Intrinsic Surface Chemical Properties, in: Matijević E (ed), Surface and Colloid Science, Vol 12, Plenum, New York, pp 119–216

    Google Scholar 

  30. Tombácz E (2002) Adsorption from electrolyte solutions, in: Tóth J (ed), Adsorption: Theory, Modeling, and Analysis, Marcel Dekker, New York, pp 711–742

    Google Scholar 

  31. Kosmulski M (2001) Chemical Properties of Material Surfaces. Marcel Dekker, New York, p 753

    Google Scholar 

  32. Sun Z, Su F, Forsling W, Samskog PJ (1998) Surface Characteristics of Magnetite in Aqueous Suspension. Colloid Interf Sci 197:151–159, doi:10.1006/jcis.1997.5239

    Article  CAS  Google Scholar 

  33. Illés E, Tombácz E (2003) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf A 230(1–3):99–109, doi:10.1016/j.colsurfa.2003.09.017

    Article  CAS  Google Scholar 

  34. Wooding A, Kilner M, Lambrick DB (1991) Studies of the double surfactant layer stabilization of water-based magnetic fluids. J Colloid Interf Sci 144:236–242

    Article  CAS  Google Scholar 

  35. Chen K, Bakuzis AF, Luo W (2006) Improving surfactant grafting in magnetic colloids. Appl Surf Sci 252:6379–6382, doi:10.1016/j.apsusc.2005.12.160

    Article  CAS  Google Scholar 

  36. Tombácz E, Bica D, Hajdú A, Illés E, Majzik A, Vékás L (2008) Surfactant double layer stabilized magnetic nanofluids for biomedical application. J Phys Condens Matter 20:204103 (6pp) doi: 10.1088/0953-8984/20/20/204103

    Article  CAS  Google Scholar 

  37. Wooding A, Kilner M, Lambrick DB (1992) “Stripped” magnetic particles. Applications of the double surfactant layer principle in the preparation of water-based magnetic fluids. J Colloid Interf Sci 149:98–104

    Article  CAS  Google Scholar 

  38. Hong RY, Zhang SZ, Han YP, Li HZ, Ding J, Zheng Y (2006) Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol 170:1–11, doi:10.1016/j.powtec.2006.08.017

    Article  CAS  Google Scholar 

  39. Antelo J, Avena M, Fiol S, López R, Arce F (2005) Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. J Colloid Interf Sci 285:476–486, doi:10.1016/j.jcis.2004.12.032

    Article  CAS  Google Scholar 

  40. Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute Aggregation Rate Constants of Hematite Particles in Aqueous Suspensions: A Comparison of Two Different Surface Morphologies. J Colloid Interf Sci 196:241–253, doi:10.1006/jcis.1997.5207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tombácz .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hajdú, A., Tombácz, E., Illés, E., Bica, D., Vékás, L. (2008). Magnetite Nanoparticles Stabilized Under Physiological Conditions for Biomedical Application . In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_111

Download citation

Publish with us

Policies and ethics