Skip to main content

Some observations about NP complete sets

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1987)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 278))

Included in the following conference series:

Abstract

In this paper, we summarize and extend some recent results about the properties of NP complete sets and related results about the structure of feasible computations.

This research has been supported in part by National Science Foundation Grant CCR 8520597.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Berman. Relationships between density and deterministic complexity of NP-complete languages. Proceedings of the 5th International Colloquium on Automata, Languages, and Programming, Springer-Verlag Lecture Notes in Computer Science, 62, pp. 63–71, 1978.

    Google Scholar 

  2. R.V. Book, et al, ”Inclusion Complete Tally Languages and the Hartmanis-Berman Conjecture”, Math. Systems Theory 11, pp. 1–8, 1978.

    Google Scholar 

  3. J. Balcazar, R. Book, T. Long, U. Schoening, and A. Selman. Sparse oracles and uniform complexity classes. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 308–313, 1984.

    Google Scholar 

  4. T. Baker, J. Gill, and R. Solovay. Relativizations of the P=? NP question. SIAM Journal on Computing 4, pp. 431–442, 1975.

    Google Scholar 

  5. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing 6, pp. 305–322, 1977.

    Google Scholar 

  6. R.V. Book. Tally Languages and Complexity classes. Information and Control 26, pp. 186–193, 1974.

    Google Scholar 

  7. J. Cai and L. Hemachandra. The Boolean Hierarchy: hardware over NP. In Structure in Complexity Theory Springer-Verlag Lecture Notes in Computer Science #233, pp. 105–124, 1986.

    Google Scholar 

  8. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

    Google Scholar 

  9. J. Goldsmith and D. Joseph. Three results on the polynomial isomorphism of complete sets. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 390–397, 1986.

    Google Scholar 

  10. J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 495–503, 1984.

    Google Scholar 

  11. J. Hartmanis. On Sparse Sets in NP-P: Information Processing Letters 16, pp. 55–60, 1983.

    Google Scholar 

  12. J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 439–445, 1983.

    Google Scholar 

  13. J. Hartmanis. Solvable problems with conflicting relativizations. Bulletin of the European Association for Theoretical Computer Science, pp. 40–49, Oct. 1985.

    Google Scholar 

  14. J. Hartmanis and L. Hemachandra. Complexity classes without machines: on complete languages for UP. In Automata, Languages, and Programming (ICALP 1986) Springer-Verlag Lecture Notes in Computer Science #226, pp. 123–135, 1986.

    Google Scholar 

  15. J. Hartmanis and L. Hemachandra. On Sparse Oracles Separating Feasible Complexity Classes. In STACS: 3rd Annual Symposium on Theoretical Aspects of Computer Science, Springer-Verlag Lecture Notes in Computer Science #210, pp. 321–333, 1986.

    Google Scholar 

  16. J. Hartmanis and L. Hemachandra. One-Way Functions, Robustness, and the Non-Isomorphism of NP Complete Sets. Department of Computer Science, Cornell University, Ithaca, New York. Technical Report TR 86–796. To be presented at Structure in Complexity Theory, 1987.

    Google Scholar 

  17. J. Hartmanis and N. Immerman. On complete problems for NP ∩ coNP. In Automata, Languages, and Programming (ICALP 1985), Springer-Verlag Lecture Notes in Computer Science #194, pp. 250–259, 1985.

    Google Scholar 

  18. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65, pp. 159–181, May/June 1985.

    Google Scholar 

  19. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  20. J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical Computer Science, 34, pp. 17–32, 1984.

    Google Scholar 

  21. D. Joseph and P. Young. Some remarks on witness functions for non-polynomial and non-complete sets in NP. Theoretical Computer Science, 39, pp. 225–237, 1985.

    Google Scholar 

  22. J. Kadin. Deterministic Polynomial Time with O(log(n)) Queries. Technical Report TR-86-771, Cornell University, August 1986.

    Google Scholar 

  23. J. Kadin. P NP[log] and sparse Turing complete sets for NP. 1986. Accepted for Structure in Complexity Theory, 1987.

    Google Scholar 

  24. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In ACM Symposium on Theory of Computing, pp. 302–309, 1980.

    Google Scholar 

  25. S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 380–389, 1986.

    Google Scholar 

  26. A. Kolmogorov. Three approaches for defining the concept of information quantity. Prob. Inform. Trans., 1, pp. 1–7, 1965.

    Google Scholar 

  27. D. Kozen. Indexing of Subrecursive classes. Theoretical Computer Science, pp. 277–301, 1980.

    Google Scholar 

  28. S. Kurtz. A relativized failure of the Berman-Hartmanis conjecture. 1983. Unpublished manuscript.

    Google Scholar 

  29. S. Kurtz. Sparse Sets in NP-P: Relativizations. SIAM Journal of Computing 14, pp. 113–119, 1983.

    Google Scholar 

  30. R. Ladner. On the Structure of polynomial time reducibility. Journal of the Association for Computing Machinery 22, pp. 155–171, 1975.

    Google Scholar 

  31. Ming Li. Lower Bounds in Computational Complexity, Ph.D. Thesis, Cornell University, Ithaca, New York, 1985.

    Google Scholar 

  32. T.J. Long. A note on sparse oracles for NP. Journal of Computer and System Sciences, 24, pp. 224–232, 1982.

    Google Scholar 

  33. T.J. Long. On restricting the size of oracles compared with restricting access to oracles. SIAM Journal on Computing, 14, pp. 585–597, 1985.

    Google Scholar 

  34. S. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 54–60, 1980.

    Google Scholar 

  35. S. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. Journal of Computer and Systems Sciences, 25, pp. 130–143, 1982.

    Google Scholar 

  36. S. Mahaney. On the number of p-isomorphism classes of NP-complete sets. Proceedings of the 22nd IEEE Symposium on Foundations of Computer Science, pp. 130–143, 1981.

    Google Scholar 

  37. S. Mahaney. Sparse sets and reducibilities. In Studies in Complexity Theory, ed. R.V. Book, John Wiley and sons, Inc., New York, pp. 63–118, 1986.

    Google Scholar 

  38. S. Mahaney and P. Young. Reductions among polynomial isomorphism types. Theoretical Computer Science, pp. 207–224, 1985.

    Google Scholar 

  39. C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of ACM, 29, pp. 261–268, 1982.

    Google Scholar 

  40. K. Regan. On diagonalization methods and the structure of language classes. Proceedings FCT '83, Springer-Verlag Lecture Notes in Computer Science #158, pp. 368–380, 1983.

    Google Scholar 

  41. K. Regan. On the separation of complexity classes. Ph.D. dissertation, Oxford University, August 1986.

    Google Scholar 

  42. H. Rogers, Jr. ”Theory of Recursive Functions and Effective Computability”, McGraw-Hill, New York, NY, 1967.

    Google Scholar 

  43. U. Schoening. Complexity and Structure. Springer-Verlag Lecture Notes in Computer Science #211, 1986.

    Google Scholar 

  44. M. Sipser. On relativization and the existence of complete sets. In Automata, Language, and Programming (ICALP 1982), Springer-Verlag Lecture Notes in Computer Science #140, pp. 523–531, 1982.

    Google Scholar 

  45. A.L. Selman and J. Grollmann. Complexity measures for public-key cryptosystems. Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, pp. 495–503, 1984.

    Google Scholar 

  46. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3, pp. 1–22, 1977.

    Google Scholar 

  47. A. Yao. Separating the Polynomial-time hierarchy by oracles. In Proceedings IEEE Symposium on Foundations of Computer Science, pp. 1–10, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lothar Budach Rais Gatič Bukharajev Oleg Borisovič Lupanov

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmanis, J. (1987). Some observations about NP complete sets. In: Budach, L., Bukharajev, R.G., Lupanov, O.B. (eds) Fundamentals of Computation Theory. FCT 1987. Lecture Notes in Computer Science, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18740-5_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-18740-5_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18740-0

  • Online ISBN: 978-3-540-48138-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics