Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Alexander M, Clark FE (1965) Nitrifying bacteria. In: Black CA (ed) Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA, pp 1477–1483

    Google Scholar 

  • Aspiras RB, Allen ON, Harris RF, Chester G (1971) The role of microorganisms in the stabilization of soil aggregates. Soil Biol Biochem 3:347–353

    Article  CAS  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Bae KS, Barton LL (1989) Alkaline phosphates and other hydrolyases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Appl Environ Microbiol 55:2511–2516

    CAS  Google Scholar 

  • Bansal M, Chamola BP, Sarwar N, Mukerji KG (2000) Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic Press/Plenum, New York, pp 143–152

    Google Scholar 

  • Barber DA, Lynch JM (1997) Microbial growth in the rhizosphere. Soil Biol Biochem 9:305–308

    Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158

    Google Scholar 

  • Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Touant A (ed) Biological resource management: connecting science and policy. OECD, INRA Editions and Springer, Berlin Heidelberg, New York, pp 110–125

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64: 2304–2307

    CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcon R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solublizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutri Cycl Agroecosyst 65:35–42

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  CAS  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2001) Metabolic structure of bacterial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA Jr (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Microorg 62: 569–591

    Google Scholar 

  • Beare MH, Cabrera ML, Hendrix PF, Coleman CD (1994) Aggregate-protected and unprotected pools of organic matter in conventional and no-tillage soils. Soil Sci Soc Am J 57:392–399

    Google Scholar 

  • Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Benizri E, Baudin E, Guckert A (2001) Root colonization by plant growth promoting Rhizobacteria. Biocont Sci Technol 5(11):557–574

    Google Scholar 

  • Benizri E, Dedourge O, Di Battista-Leboeuf C, Nguyen CS, Piutti, Guckert A (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl Soil Ecol 21:261–265

    Article  Google Scholar 

  • Benson DR (1988) The genus Frankia: actinimycetes symbionts of plants. Microb Sci 5:9–12

    CAS  Google Scholar 

  • Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of caesium and other cations by plants. Mycorrhiza 10:275–280

    Article  CAS  Google Scholar 

  • Blair JM, Parmelee RW, Beare MH (1990) Decay rates, nitrogen fluxes and decomposer communities of single-and mixed species foliar litter. Ecology 7:1976–1985

    Google Scholar 

  • Boddy L, Walting R, Lycon AJE (eds) (1988) Fungi and ecological disturbance. Proc R Soc Edinb 94:1–188

    Google Scholar 

  • Bolton H Jr, Fredrikson JK, Elliot LE (1993) Microbiology of the rhizosphere. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 27–63

    Google Scholar 

  • Borneman J, Skroach PW, O’sullivan EW, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62: 1935–1943

    CAS  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half. In:Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 641–669

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–10

    Google Scholar 

  • Bruck TD (1987) The study of microorganisms in situ: progress and problems. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. SGM symposium 41. Cambridge Univ Press, Cambridge, pp 1–17

    Google Scholar 

  • Bruns RG, Slatar JH (1982) Experimental microbial ecology. Blackwell, Oxford, 683 pp

    Google Scholar 

  • Burr JJ, Caesar A (1984) Beneficial plant bacteria. CRC Crit Rev Plant Sci 21:1–20

    Google Scholar 

  • Capone DG (2000) The marine nitrogen cycle. In: Kirchman D (ed) Microbial ecology of the ocean. Wiley-Liss, New York, pp 455–493

    Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An uptake on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175

    Article  CAS  Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81: 1–19

    Google Scholar 

  • Clarholm M (1985) Possible roles of roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 297–317

    Google Scholar 

  • Coleman DC, Crossley DA Jr, Beare MH, Hendrix PF (1988) Interactions of organisms at root/soil and litter/soil interfaces in terrestrial ecosystems. Agric Ecosyst Environ 24:117–134

    Google Scholar 

  • Cromack K, Caldwell BA (1992) The role of fungi in litter decomposition and nutrient cycling. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Dekker, New York, pp 601–618

    Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  CAS  Google Scholar 

  • Devereux R, Stahl DA (1993) Phylogeny of sulfate-reducing bacteria and a perspective for analysing their natural communities. In: Odom JM, Singleton R Jr (eds) Sulfate-reducing bacteria: contemporary perspectives. Springer, Berlin Heidelberg New York, pp 131–160

    Google Scholar 

  • Dighton J, Boddy L (1989) Role of fungi in nitrogen, phosphorous and sulphur cycling in temperate forest ecosystems. In: Boddy L, Marchent R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge Univ Press, Cambridge, pp 269–298

    Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragment coding for16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbanceinduced reduction of nutrient absorption in maize. New Phytol 110:67–74

    Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–106

    Google Scholar 

  • Foster RC (1988) Microenvironment of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  • Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3:200–205

    Google Scholar 

  • Friese CF, Allen MF (1993) The interaction of harvester ants and vesicular arbuscular mycorrhizal fungi in a patchy semi-arid environment: the effects of mound structure on fungal dispersion and establishment. Funct Ecol 7:13–20

    Google Scholar 

  • Gaskins MH, Albrecht SL, Hubell DH (1984) Rhizosphere bacteria and their use to increase plant productivity: a review. Agric Ecosyst Environ 12:99–116

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2001) VAM/VA mycorrhizal technology in establishment of plants under salinity stress conditions. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 51–85

    Google Scholar 

  • Gochenauer SE (1981) Responses of soil fungal communities to disturbance. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 459–479

    Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil microorganisms. In: Kapulink Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 239–262

    Google Scholar 

  • Hamilton WE, Dindal DL (1983) The vermisphere concept: earthworm activity and sewage sludge. Biocycle 24:54–55

    Google Scholar 

  • Hawksworth DL (1991a) The biodiversity of microorganisms and invertibrates: its role in sustainable agriculture. CAB International/Redwood Press, Melksham, UK, 302 pp

    Google Scholar 

  • Hawksworth DL (1991b) The fungal dimension of diversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Herbert R (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbial Rev 23:563–590

    Article  CAS  Google Scholar 

  • Herman RP, Provencio KR, Torrez RJ, Seager GM (1993) Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones. Appl Environ Microbiol 59:3021–3026

    CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    CAS  Google Scholar 

  • Hurst CJ (2002) An introduction to viral taxonomy and the proposal of Akamara, a potential domain for the genomic acellular agents. In: Hurst CJ (ed) Viral ecology. Academic Press, San Diego, pp 41–62

    Google Scholar 

  • Jeffries P (1997) Mycoparasitism. In: Wicklow DT, Sodertom BE (eds) Environmental and microbial relationship. The Mycota IV. Springer, Berlin Heidelberg New York, pp 95–113

    Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Jones JW (1991) Diversity and physiology of methanogens. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society of Microbiology, Washington, DC, pp 39–35

    Google Scholar 

  • Jorgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Philos Trans R Soc Lond 298:543–561

    CAS  Google Scholar 

  • Jorgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol 13:303–312

    CAS  Google Scholar 

  • Kaplan WA (1983) Nitrification. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 139–190

    Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Soil factors in relation to distribution and occurrence of vesicular arbuscular mycorrhiza. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 51–85

    Google Scholar 

  • Killham K (1987) Heterotrophic nitrification. In: Prosser JI (ed) Nitrification. Society of General Microbiology, Spec Public IRL Press, Oxford, pp 117–126

    Google Scholar 

  • Kjoller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39:391–422

    Google Scholar 

  • Kluge M, Gehrig H, Mollenhauer D, Schnepf E, Schubler A (1997) News on Geosiphon pyriforme, an endocytobiotic consortium of a fungus with a cyanobacterium. In: Schenk HEA, Herrmann R, Jeon KW, Muller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin Heidelberg New York, pp 469–476

    Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E, Schüßler A (2002) The Nostoc — Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30

    Google Scholar 

  • Koch B, Kaldorf M, Rexer KH, Kost G, Varma A (2004) Patterns of interaction between Populus esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol (in press)

    Google Scholar 

  • Kumari R, Yadav HK, Bhoon YK, Varma A (2003) Colonization of Cruciferous plants by Piriformospora indica. Curr Sci 85: 1672–1674

    Google Scholar 

  • Kyrpides NC, Olsen GJ (1999) Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? Trends Genet 15: 298–299

    Article  CAS  Google Scholar 

  • Lakhanpal TN (2000) Ectomycorrhiza-an overview. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer/Plenum, New York, pp 101–118

    Google Scholar 

  • Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergstrom I (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122

    Google Scholar 

  • Lee KE, Foster RC (1991) Soil fauna and soil structure. Aust J Soil Res 29:745–775

    Article  Google Scholar 

  • Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal infection with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78: 366–371

    Google Scholar 

  • Lobry de Bruyn LA, Conacher AJ (1990) The role of termites and ants in soil modification: a review. Aust J Soil Res 28:55–93

    Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil Pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49:416–422

    CAS  Google Scholar 

  • Lovley DR, Phillips (1994) Novel processes for anaerobic sulfate production from elemental sulfate by sulfur-reducing bacteria. Appl Environ Microbiol 60:2394–2399

    CAS  Google Scholar 

  • Lynch JM (1987a) Microbial interactions in the rhizosphere. Soil Microorg 30:33–41

    Google Scholar 

  • Lynch JM (1987b) Soil biology — accomplishments and potential. Soil Sci Soc Am J 51:1409–1412

    Article  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York

    Google Scholar 

  • Lynch JM, Harper SHT (1985) The microbial upgrading of straw for agricultural use. Philos Trans R Soc Lond 310:221–226

    Google Scholar 

  • Lynch JM, Hobbie JB (1988) Microorganisms in action: concepts and application in microbial ecology. Blackwell, Oxford, 363 pp

    Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influences on population of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Google Scholar 

  • Mehta AP, Torma AE, Murr LE (1979) Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnol Bioeng 21:875–885

    Article  CAS  Google Scholar 

  • Metting B (1988) Micro-algae in agriculture. In: Borowitzka MA, Borowitzka LA (eds) Micro-algal biotechnology. Cambridge Univ Press, Cambridge, pp 288–304

    Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyreforme(Kuiz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kuiz.). Hariot Protoplasma 139: 3–9

    Google Scholar 

  • Moreno J, Gonsalez Loper J, Vela GR (1986) Survival of Azotobacter spp. in dry soils. Appl Environ Microbiol 51:123–125

    CAS  Google Scholar 

  • Mukerji KG, Mandeep K, Varma A (1997) Mycorrhizosphere microorganisms: screening and evaluation. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 85–98

    Google Scholar 

  • Nannipieri P, Sastre I, Landi L, Lobo MC, Pietramellara G (1996) Determination of extracellular neutral phosphomonoesterase activity in soil. Soil Biol Biochem 28:107–112

    Article  CAS  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating prospective. Appl Soil Ecol 5:1–20

    Google Scholar 

  • Newman EI (1985) The Rhizosphere: carbon sources and microbial populations. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil, plants, microbes and animals. Blackwell, Oxford, pp 107–121

    Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Pant HK, Warman PR (2000) Enzyme hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol Fertil Soils 30:306–311

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Payne JW (1981) Denitrification. Wiley, New York

    Google Scholar 

  • Pennisi E (1999) Is it time to uproot the tree of life? Science 284:1305–1307

    CAS  Google Scholar 

  • Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Luis P, Kaldorf M, Tatjana P, Harrmann S, Hehl S, Declerck S, Buscot F, Oelmuller R, Rexer KH, Kost G, Varma A (2004a) Interaction of P. indica with other microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York pp 237–265

    Google Scholar 

  • Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmuller R, Tatjana P, Weiss M, Hampp R, Varma A (2004b) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York, pp 593–616

    Google Scholar 

  • Postgate JR (1987) Nitrogen fixation, 2nd edn. Arnold, London

    Google Scholar 

  • Prescott LM, Harley JP, Klein DA (1996) The diversity of the microbial world. In: Prescott LM, Harley JP, Klein DA (eds) Microbiology. WCB Publishers, Dubuque, Iowa

    Google Scholar 

  • Quastel JH (1995) Soil metabolism. Proc R Soc 143:159–179

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    CAS  Google Scholar 

  • Reid JB, Goss JM (1981) Effects of living roots of different plant species on the aggregate stability of two arable soils. J Soil Sci 52: 521–541

    Google Scholar 

  • Salyers AA, Whitt DD (2001) Diversity and history of microorganisms. In: Salyers AA, Whitt DD (eds) Microbiology: diversity, diseases and the environment. Fitzgerald Science Press, Bethesda, Maryland, pp 19–32

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  Google Scholar 

  • Schimel JP, Firestone MK, Killham K (1984) Identification of heterotrophic nitrification in a Sieerrs forest soil. Appl Environ Microbiol 48:802–806

    CAS  Google Scholar 

  • Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriforme and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Google Scholar 

  • Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 151–161

    Google Scholar 

  • Schüßler A, Wolf E, Kluge M (2001) Geosiphon pyriforme and Nostoc punctiforme: a unique symbiosis with implications for mycorrhizal research. ISS Symb Int 1:4–5

    Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Shaw C, Pawluk S (1986) The development of soil structure by Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris in parent materials belonging to different textural classes. Pedobiologia 29:327–339

    Google Scholar 

  • Singh An, Singh A, Kumari M, Rai MK, Varma A (2003) Biotechnology importance of Piriformospora indica — a novel symbiotic mycorrhiza-like fungus: an overview. Ind J Biotech 2:65–75

    Google Scholar 

  • Slater JH (1988) Microbial population and community dynamics. In: Lunch JM, Hobbie JB (eds) Microorganisms in action: concepts and application in microbial ecology. Blackwell, Oxford, pp 51–74

    Google Scholar 

  • Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215

    Article  Google Scholar 

  • Sollins P, Cromack K Jr, Li CY, Fogel R (1981) Role of low-molecular weight organic acids in the inorganic nutrition of fungi and higher plants. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in ecosystem. Dekker, New York

    Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 1–39

    Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) The microbial world. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Subba Roa NS (1997) Soil microbiology. IBH Publ, Oxford

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, studies in ecology, vol 5. Blackwell, Oxford, UK

    Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller Rh, Keeney DR Methods of soil analysis, part 2. Chemical and microbiological properties — Agronomy monograph, No 9, 2nd edn. Wisconsin, pp 903–947

    Google Scholar 

  • Tate RL II (1987) Soil organic matter: biological and ecological effects. Wiley, New York, 291 pp

    Google Scholar 

  • Tate RL III (1995) Soil microbiology. Wiley, New York

    Google Scholar 

  • Tarafdar JC, Rao AV (1996) Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chick pea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl Soil Ecol 3:109–114

    Article  Google Scholar 

  • Van Niel EWJ, Gottschal JC (1998) Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–1039

    Google Scholar 

  • Vannier G (1987) The porosphere as an ecological medium emphasized in Professor Gilarov’s work on soil animal adaptations. Biol Fertil Soil 3:39–44

    Google Scholar 

  • Varma A, Verma S, Sudha Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    CAS  Google Scholar 

  • Varma A, Singh A, Sudha Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: A cultivable mycorrhizalike endosymbiotic fungus. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 123–150

    Google Scholar 

  • Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Buetehorn P, Franken P (1998) Piriformospora indica gen. nov., a new root-colonizing fungus. Mycologia 90:895–909

    Google Scholar 

  • Visscher PT, Vandenede FP, Schaub BEM, van Gemerden H (1992) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbial Ecol 101:51–58

    CAS  Google Scholar 

  • Von Wettstein F (1915) Geosiphon Fr. v. Wettst., eine neue, interessante siphone. Österr Bot Z 65:145–156

    Google Scholar 

  • Vosatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251

    Google Scholar 

  • Wainwright M (1992) The impact of fungi on environmental biogeochemistry. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Dekker, New York, pp 601–618

    Google Scholar 

  • Wicklow MC, Billen WB, Denison WC (1974) Comparison of soil microfungi in 40 year-old stands of pure alder, pure conifer, and alder-conifer mixtures. Soil Biol Biochem 6:73–78

    Article  Google Scholar 

  • Widdel F, Hansen TA (1991) The dissimilatory sulfate and sulfur-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 583–634

    Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizosphere in response to crop species, soil type, and crop development. Appl Environ Microbiol 67: 5849–5854

    Article  CAS  Google Scholar 

  • Wilson EO (1988) Biodiversity. National Academy Press, Washington, DC

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  Google Scholar 

  • Wolters V (1991) Soil invertebrates — effects on nutrient turnover and soil structure: a review. Z Pflanzenern Bodenkd 154:389–402

    Google Scholar 

  • Wood M (1989) Soil biology. Chapman and Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giri, B., Giang, P.H., Kumari, R., Prasad, R., Varma, A. (2005). Microbial Diversity in Soils. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_2

Download citation

Publish with us

Policies and ethics