Skip to main content

Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control

  • Conference paper
Dimension Reduction of Large-Scale Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 45))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrover, A., Giona, M.: Modal reduction of PDE models by means of snapshot archetypes. Physica D, 182, 23–45 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Afanasiev, K.: Stabilitätsanalyse, niedrigdimensionale Modellierung und optimale Kontrolle der Kreiszylinderumströmung. PhD thesis, Technische Universität Dresden, Fakultät für Maschinenwesen (2002).

    Google Scholar 

  3. Afanasiev K., Hinze, M.: Entwicklung von Feedback-Controllern zur Beeinflussung abgelöster Strömungen. Abschlußbericht TP A4, SFB 557, TU Berlin (2000).

    Google Scholar 

  4. Afanasiev, K., Hinze, M.: Adaptive control of a wake flow using proper orthogonal decomposition. Lect. Notes Pure Appl. Math., 216, 317–332 (2001).

    MathSciNet  Google Scholar 

  5. Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000).

    Google Scholar 

  6. Atwell, J.A., Borggaard, J.T., King, B.B.: Reduced order controllers for Burgers' equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci., 11, 1311–1330 (2001).

    MathSciNet  MATH  Google Scholar 

  7. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech., 192, 115–173 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bänsch, E.: An adaptive finite-element-strategy for the three-dimensional time-dependent Navier-Stokes-Equations. J. Comp. Math., 36, 3–28 (1991).

    Article  MATH  Google Scholar 

  9. Banks, H.T., Joyner, M.L., Winchesky, B., Winfree, W.P.: Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems, 16, 1–17 (2000).

    Article  Google Scholar 

  10. Barz, R.U., Gerbeth, G., Gelfgat, Y., Buhrig, E., Wunderwald, U.: Modelling of the melt flow due to rotating magnetic fields in crystal growth. Journal of Crystal Growth, 180, 410–421 (1997).

    Article  Google Scholar 

  11. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite elements. Acta Numerica, 10, 1–102 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer-Verlag, Berlin (1992).

    Google Scholar 

  13. Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. ISNM, 143, 87–103 (2002).

    Google Scholar 

  14. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numerische Mathematik, 97, 297–320 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. Deimling, K.: Nonlinear Functional Analysis. Berlin, Springer (1985).

    MATH  Google Scholar 

  16. Diwoky, F., Volkwein, S.: Nonlinear boundary control for the heat equation utilizing proper orthogonal decomposition. In: Hoffmann, K.-H., Hoppe, R.H.W., Schulz, V., editors, Fast solution of discretized optimization problems, International Series of Numerical Mathematics 138 (2001), 73–87.

    Google Scholar 

  17. Fukunaga, K.: Introduction to Statistical Recognition. Academic Press, New York (1990).

    MATH  Google Scholar 

  18. Gombao, S.: Approximation of optimal controls for semilinear parabolic PDE by solving Hamilton-Jacobi-Bellman equations. In: Proc. of the 15th International Symposium on the Mathematical Theory of Networks and Systems, University of Notre Dame, South Bend, Indiana, USA, August 12–16 (2002).

    Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore and London (1989).

    MATH  Google Scholar 

  20. Henri, T., Yvon, M.: Convergence estimates of POD Galerkin methods for parabolic problems. Technical Report No. 02-48, Institute of Mathematical Research of Rennes (2002).

    Google Scholar 

  21. Heuveline, V., Hinze, M.: Adjoint-based adaptive time-stepping for partial differential equations using proper orthogonal decomposition, in preparation.

    Google Scholar 

  22. Heywood, J.G., Rannacher, R., Turek, S.: Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations. Int. J. Numer. Methods Fluids, 22, 325–352 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinze, M.: Optimal and Instantaneous control of the instationary Navier-Stokes equations. Habilitationsschrift, Technischen Universität Berlin (1999).

    Google Scholar 

  24. Hinze, M.: Model reduction in control of time-dependent pdes. Talk given at the Miniworkshop on Optimal control of nonlinear time dependent problems, January 2004, Organizers K. Kunisch, A. Kunoth, R. Rannacher. Talk based on joint work with V. Heuveline, Karlsruhe.

    Google Scholar 

  25. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Computational Optimization and Applications 30, 45–61 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. Hinze, M., Kunisch, K.: Three control methods for time-dependent Fluid Flow. Flow, Turbulence and Combustion 65, 273–298 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  27. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim., 40, 925–946 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  28. Hinze, M., Volkwein, S.: POD Approximations for optimal control problems govered by linear and semi-linear evolution systems, in preparation.

    Google Scholar 

  29. Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach utilizing proper orthogonal decomposition. Mathematical and Computer Modelling, 38, 1003–1028 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University Press (1996).

    Google Scholar 

  31. Ito, K., Ravindran, S.S.: A reduced basis method for control problems governed by PDEs. In: Desch, W., Kappel, F., Kunisch, K. (ed), Control and Estimation of Distributed Parameter Systems. Proceedings of the International Conference in Vorau, 1996, 153–168 (1998).

    Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1980).

    MATH  Google Scholar 

  33. Kunisch, K., Volkwein, S.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition. J. Optimization Theory and Applications, 102, 345–371 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  34. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 90, 117–148 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  35. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 40, 492–515 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  36. Kunisch, K., Volkwein, S., Lie, X.: HJB-POD based feedback design for the optimal control of evolution problems. To appear in SIAM J. on Applied Dynamical Systems (2004).

    Google Scholar 

  37. Lall, S., Marsden, J.E., Glavaski, S.: Empirical model reduction of controlled nonlinear systems. In: Proceedings of the IFAC Congress, vol. F, 473–478 (1999).

    Google Scholar 

  38. Leibfritz, F., Volkwein, S.: Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming. Linear Algebra Appl., to appear.

    Google Scholar 

  39. Leibfritz, F., Volkwein, S.: Numerical feedback controller design for PDE systems using model reduction: techniques and case studies. Submitted (2004).

    Google Scholar 

  40. Meyer, M., Matthies, H.G.: Efficient model reduction in nonlinear dynamics using the Karhunen-Loève expansion and dual weighted residual methods. Comput. Mech., 31, 179–191 (2003).

    Article  MATH  Google Scholar 

  41. Noack, B., Afanasiev. K., Morzynski, M., Tadmor, G., Thiele, F.: A hierachy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid. Mech., 497, 335–363 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  42. Noble, B.: Applied Linear Algebra. Englewood Cliffs, NJ: Prentice-Hall (1969).

    MATH  Google Scholar 

  43. Nocedal, J, Wright, S.J.: Numerical Optimization. Springer, NJ (1999).

    MATH  Google Scholar 

  44. Ly, H.V., Tran, H.T.: Modelling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer Modeling, 33, 223–236, (2001).

    Article  MATH  Google Scholar 

  45. Rannacher, R.: Finite element methods for the incompressible Navier-Stokes equations. In: Galdi, G.P. (ed) et al., Fundamental directions in mathematical fluid mechanics. Basel: Birkhuser. 191–293 (2000).

    Google Scholar 

  46. Rathinam, M., Petzold, L.: Dynamic iteration using reduced order models: a method for simulation of large scale modular systems. SIAM J. Numer. Anal., 40, 1446–1474 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  47. Ravindran, S.S.: Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput., 15:457–478 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  48. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980).

    MATH  Google Scholar 

  49. Rempfer, D., Fasel, H.F.: Dynamics of three-dymensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257–283 (1994).

    Article  Google Scholar 

  50. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. To appear in Int. J. on Bifurcation and Chaos (2004).

    Google Scholar 

  51. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed), Flow simulation with high-performance computers II. DFG priority research programme results 1993–1995. Wiesbaden: Vieweg. Notes Numer. Fluid Mech., 52, 547–566 (1996).

    Google Scholar 

  52. Shvartsman, S.Y., Kevrikidis, Y.: Nonlinear model reduction for control of distributed parameter systems: a computer-assisted study. AIChE Journal, 44, 1579–1595 (1998).

    Article  Google Scholar 

  53. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I–III. Quart. Appl. Math., XLV, 561–590 (1987).

    MathSciNet  Google Scholar 

  54. Tang, K.Y., Graham, W.R., Peraire, J.: Optimal control of vortex shedding using low-order models. I: Open loop model development. II: Model based control. Int. J. Numer. Methods Eng., 44, 945–990 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  55. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences, Springer-Verlag, New York (1988).

    Google Scholar 

  56. Volkwein, S.: Optimal control of a phase-field model using the proper orthogonal decomposition. Zeitschrift für Angewandte Mathematik und Mechanik, 81, 83–97 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  57. Volkwein, S.: Second-order conditions for boundary control problems of the Burgers equation. Control and Cybernetics, 30, 249–278 (2001).

    MATH  Google Scholar 

  58. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40:11, 2323–2330, (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinze, M., Volkwein, S. (2005). Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27909-1_10

Download citation

Publish with us

Policies and ethics