Skip to main content

The Emergence of Fruiting Bodies in Basidiomycetes

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama R, Sato Y, Kajiwara S, Shishido K (2002) Cloning and expression of cytochrome P450 genes, belonging to a new P450 family, of the basidiomycete Lentinula edodes. Biosci Biotechnol Biochem 66:2183–2188

    PubMed  CAS  Google Scholar 

  • Aono T, Yanai H, Miki F, Davey J, Shimoda C (1994) Mating pheromone-induced expression of the mat1-Pm gene of Schizosaccaromyces pombe: identification of signalling components and characterization of upstream controlling elements. Yeast 10:757–770

    PubMed  CAS  Google Scholar 

  • Ásgeirsdóttir SA, van Wetter MA, Wessels JGH (1995) Differential expression of genes under control of the matingtype genes in the secondary mycelium of Schizophyllum commune. Microbiology 141:1281–1288

    Google Scholar 

  • Ásgeirsdóttir SA, Halsall JR, Casselton LA (1997) Expression of two closely linked hydrophobin genes of Coprinus cinereus is monokaryon-specific and down-regulated by the oid-1 mutation. Fungal Genet Biol 22:54–63

    PubMed  Google Scholar 

  • Ásgeirsdóttir SA, de Vries OMH, Wessels JGH (1998) Identi-fication of three differentially expressed hydrophobins in Pleurotus ostreatus (oyster mushroom). Microbiology 144:2961–2969

    PubMed  Google Scholar 

  • Berne S, Križaj I, Pohleven F, Turk T, Maček P, Sepčić K (2002) Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochem Biophys Acta 1570:153–159

    PubMed  CAS  Google Scholar 

  • Bertossa RC, Kues U, Aebi M, Kunzler M (2004) Promoter analysis of cgl2, a galectin encoding gene transcribed during fruiting body formation in Coprinopsis cinerea (Coprinus cinereus). Fungal Genet Biol 41:1120–1131

    PubMed  CAS  Google Scholar 

  • Birkinshaw JH, Findlay, WPK, Webb RA (1942) Biochemistry of the wood-rotting fungi. The production of methyl mercaptan by Schizophyllum commune. Biochem J 36:526–529

    PubMed  CAS  Google Scholar 

  • Boulianne RP, Liu Y, Aebi, M, Lu BC, Kües U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non classical pathway. Microbiology 146:1841–1853

    PubMed  CAS  Google Scholar 

  • Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identificationof genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    PubMed  CAS  Google Scholar 

  • Bromberg SK, Schwalb MN (1976) Studies in basidiospore development in Schizophyllum commune. J Gen Microbiol 96:409–413

    PubMed  CAS  Google Scholar 

  • Bromberg SK, Schwalb MN (1977) Isolation and characterization of temperature sensitive sporulationless mutants of the basidiomycete Schizophyllum commune. Can J Genet Cytol 19:477–481

    Google Scholar 

  • Bu’Lock JD (1967) Essays in biosynthesis and microbial development. In: Squibb ER (ed) Essays in biosynthesis and microbial development, lectures on chemistry and microbial products. Wiley, New York, pp 1–18

    Google Scholar 

  • Bu’Lock JD, Walker DC (1967) On chagi. J Chem Soc Sect C, pp 336–338

    Google Scholar 

  • Chang ST, Hayes WA (eds) (1978) The biology and cultivation of edible mushrooms. Academic Press, New York

    Google Scholar 

  • Charlton S, Boulianne R, Chow YC, Lu BC (1992) Cloning and differential expression during the sexual cycle of a meiotic endonuclease-encoding gene from the basidiomycete Coprinus cinereus. Gene 122:163–169

    PubMed  CAS  Google Scholar 

  • Chen SC, Ma DB, Ge W, Buswell JA (2003) Induction of laccase activity in the edible straw mushroom, Volvariella volvacea. FEMS Microbiol Lett 218:143–148

    PubMed  CAS  Google Scholar 

  • Chen SC, Ge W, Buswell JA (2004a) Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiol Lett 230:171–176

    PubMed  CAS  Google Scholar 

  • Chen SC, Ge W, Buswell JA (2004b) Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Eur J Biochem 271:318–328

    PubMed  CAS  Google Scholar 

  • Chiu S-W, Moore D (eds) (1996) Patterns in fungal development. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Clémonçon H (1997) Anatomy of the hymenomycetes. An introduction to the cytology and plectology of crust fungi, bracket fungi, club fungi, Chantarelles, Agarics and Boletes. Flück-Wirth, Teufen, Switzerland

    Google Scholar 

  • Cooper DNW, Boulianne RP, Charlton S, Farell EM, Sucher A, Lu BC (1997) Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272:1514–1521

    PubMed  CAS  Google Scholar 

  • Corda D, Iurisci C, Berrie CP (2002) Biological activities and metabolism of lysophophatidylinositols and glycerophosphoinositols. Biochim Biophys Acta 1582:52–69

    PubMed  CAS  Google Scholar 

  • Cummings WJ, Celerin M, Crodian J, Brunick LK, Zolan ME (1999) Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr Genet 36:371–382

    PubMed  CAS  Google Scholar 

  • De Groot PWJ, Schaap PJ, Sonnenberg ASM, Visser J, van Griensven LJLD (1996) The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J Mol Biol 257:1008–1018

    PubMed  Google Scholar 

  • De Groot PWJ, Schaap PJ, van Griensven LJLD (1997) Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology 143:1993–2001

    PubMed  Google Scholar 

  • De Groot PWJ, Roeven RT, van Griensven LJ, Visser J, Schaap PJ (1999) Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom Agaricus bisporus. Microbiology 145:1105–1113

    PubMed  Google Scholar 

  • De Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OMH, Sonveaux N, Wösten HAB, Ruysschaert J-M, Hadziioannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068

    PubMed  Google Scholar 

  • De Vries OMH, Wessels JGH (1984) Patterns of protein synthesis in non-fruiting monokaryons and a fruiting dikaryon of Schizophyllum commune. J GenMicrobiol 130:145–154

    Google Scholar 

  • De Vries OMH, Kooistra WHCF, Wessels JGH (1986) Formation of an extracellular laccase by a Schizophyllum commune dikaryon. J Gen Microbiol 132:2817–2826

    Google Scholar 

  • De Vries L, Mousli M, Wurmser A, Farquhar MG (1995) GAIP, a protein that specifically interacts with the trimeric G protein Giα3, is a member of a protein family with a highly conserved core. Proc Natl Acad Sci USA 92:11916–11920

    PubMed  Google Scholar 

  • Dietzel C, Kurjan J (1987) Pheromonal regulation and sequence of the Saccharomyces cerevisae SST2 gene: a model for desensitisation to pheromone. Mol Cell Biol 7:4169–4177

    PubMed  CAS  Google Scholar 

  • Dons JJM, Springer J, de Vries SC, Wessels JGH (1984) Molecular cloning of a gene abundantly expressed during fruiting body initiation in Schizophyllum commune. J Bacteriol 157:802–808

    PubMed  CAS  Google Scholar 

  • Durand R (1983) Effects of inhibitors of nucleic acid and protein synthesis on light-induced primordial initiation in Coprinus congrgatus. Trans Br Mycol Soc 81:553–558

    CAS  Google Scholar 

  • Durand R (1985) Blue U.V.-light photoreception in fungi. Review. Physiol Végét 23:935–943

    Google Scholar 

  • Edelstein L (1982) The propagation of fungal colonies: a model for tissue growth. J Theor Biol 98:679–701

    Google Scholar 

  • Edelstein L, Segel LA (1983) Growth and metabolism in mycelial fungi. J Theor Biol 104:187–210

    CAS  Google Scholar 

  • Eger-Hummel G (1980) Blue-light photomorphogenesis in mushrooms (basidiomycetes). In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 555–562

    Google Scholar 

  • Elliot CG (1994) Reproduction in fungi. Chapman and Hall, London

    Google Scholar 

  • Esser K, Meinhardt F (1977) A common genetic control of dikaryotic and monokaryotic fruiting in the basidiomycete Agrocybe aegerita. Mol Gen Genet 155:113–115

    Google Scholar 

  • Esser K, Saleh F, Meinhardt F (1979) Genetics of fruit-body productionin higher basidiomycetes. II. Monokaryotic and dikaryotic fruiting in Schizophyllum commune. Curr Genet 1:85–88

    Google Scholar 

  • Faumann EB, Blumenthal RM, Cheng XD (1999) Structure and evolution of AdoMet-dependent methyltransferases. In: Cheng XD, Blumenthal RM (eds) S-adenosylmethionine-dependent methytransferases: structures and functions. World Scientific, Singapore, pp 1–38

    Google Scholar 

  • Fernandez Espinar MT, Labarère J (1997) Cloning and sequencing of the Aa-pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegeritae. Curr Genet 32:420–424

    PubMed  CAS  Google Scholar 

  • Flegg PB, Spencer DM, Wood D (1985) The biology and technology of the cultivated mushroom. Wiley, Chichester

    Google Scholar 

  • Fowler TJ, Mitton MF (2000) Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction. Genetics 156:1585–1594

    PubMed  CAS  Google Scholar 

  • Fraser JA, Subaran RL, Nichols CB, Heitman J (2003) Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell 2:1036–1045

    PubMed  CAS  Google Scholar 

  • Gold MH, Cheng TM (1979) Conditions for fruit body formation in the white rot basidiomycete Phanerochaete chrysosporium. Arch Microbiol 121:37–41

    CAS  Google Scholar 

  • Goutte C, Johnson AD (1988) a1 protein alters the DNA binding specificity of α2 repressor. Cell 52:875–882

    PubMed  CAS  Google Scholar 

  • Granado JD, Kertesz Chaloupková K, Aebi M, Kues U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256:28–36

    PubMed  CAS  Google Scholar 

  • Gregory PH (1984) The fungal mycelium: an historical perspective. Trans Br Mycol Soc 82:1–11

    Google Scholar 

  • Grillo R, Korhonen K, Hantula J, Hietala AM (2000) Genetic evidence of somatic haploidization in developing fruit bodies of Armillaria tabscens. Fungal Genet Biol 30:135–145

    PubMed  CAS  Google Scholar 

  • Gruen HE, Wong WM (1982) Distribution of cellular amino acids, protein, and total organic nitrogen during fruit-body development in Flammulina velutipes. II. Growth on potato-glucose solution. Can J Bot 60:1342–1351

    CAS  Google Scholar 

  • Hammad F, Ji J, Watling R, Moore D (1993) Cell population dynamics in Coprinus cinereus: co-ordination of cell inflation throughout the maturing basidiome. Mycol Res 97:269–274

    Google Scholar 

  • Hansberg W, Aguirre J (1990) Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142:201–221

    PubMed  CAS  Google Scholar 

  • Hartmann HA, Kahmann R, Bölker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15:1632–1641

    PubMed  CAS  Google Scholar 

  • Hirano T, Sato T, Enei H (2004) Isolation of genes specifi-cally expressed in the fruit body of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem 68:468–472

    PubMed  CAS  Google Scholar 

  • Hoge JHC, Springer J, Wessels JGH (1982) Changes in complex RNA during fruit-body initiation in the fungus Schizophyllum commune. Exp Mycol 6:233–243

    CAS  Google Scholar 

  • Horton JS, Raper CA (1991) A mushroom-inducing DNA sequence isolated from the basidiomycete Schizophyllum commune. Genetics 129:707–716

    PubMed  CAS  Google Scholar 

  • Horton JS, Raper CA (1995) The mushroom-inducing gene FRT1 of Schizophyllum commune encodes a putative nucleotide binding protein. Mol Gen Genet 247:358–366

    PubMed  CAS  Google Scholar 

  • Horton JS, Palmer GE, Smith WJ (1999) Regulation of dikaryon-expressed genes by FRT1 in the basidiomycete Schizophyllum commune. Fungal Genet Biol 26:33–47

    PubMed  CAS  Google Scholar 

  • Inada K, Morimoto Y, Arima T, Murata Y, Kamada T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133–140

    PubMed  CAS  Google Scholar 

  • Ishizaki T, Shishido K (2000) Decreased zinc ion accumulation by the basidiomycete Lentinus edodes over-expressing L. edodes priA gene. FEMS Microbiol Lett 193:111–115

    PubMed  CAS  Google Scholar 

  • Jennemann R, Bauer BL, Bertalanffy H, Geyer R, Gschwind RM, Selmer T, Wiegandt H (1999) Novel glycoinositolphosphosphingolipids, basidiolipids, from Agaricus. Eur J Biochem 259:331–338

    PubMed  CAS  Google Scholar 

  • Jennemann R, Geyer R, Sandhoff R, Gschwind RM, Levery SB, Grone HJ, Wiegandt H (2001) Glycoinositolphosphosphingolipids (basidiolipids) of higher mushrooms. Eur J Biochem 268:1190–1205

    PubMed  CAS  Google Scholar 

  • Jennings DH (1984) Water flow through mycelia. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of fungal mycelia. Cambridge University Press, Cambridge, pp 143–164

    Google Scholar 

  • Ji J, Moore D (1993) Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus. Mycol Res 97:283–289

    CAS  Google Scholar 

  • Kajiwara S, Yamaoka K, Hori K, Miyazawa H, Saito T, Kanno T, Shishido K (1992) Isolation and sequence of a developmentally regulated putative novel gene, priA, from the basidiomycete Lentinus edodes. Gene 114:173–178

    PubMed  CAS  Google Scholar 

  • Kamada T (2002) Molecular genetics of sexual development in the mushroom Coprinus cinereus. BioEssays 24:449–459

    PubMed  CAS  Google Scholar 

  • Kamada T, Kurita R, Takemaru T (1978) Effects of light on basidiocarp maturation in Coprinus macrorhizus. Plant Cell Physiol 19:263–275

    Google Scholar 

  • Kanda T, Ishikawa T (1986) Isolation of recessive developmental mutants in Coprinus cinereus. J Gen Appl Microbiol 32:541–543

    CAS  Google Scholar 

  • Kassir Y, Granot D, Simchen G (1988) IME1, a positive regulator gene of meiosis in Saccharomyces cerevisiae. Cell 52:853–862

    PubMed  CAS  Google Scholar 

  • Kawai G, Ikeda Y (1982) Fruiting-inducing activity of cerebrosides observed with Schizophyllum commune. Biochim Biophys Acta 719:612–618

    CAS  Google Scholar 

  • Kawai G, Onishi M, Fujino Y, Ikeda Y (1986) Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J Biol Chem 261:779–784

    PubMed  CAS  Google Scholar 

  • Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849

    PubMed  CAS  Google Scholar 

  • Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kües U (1998) Blue light overrides repression of asexual sporulation bymating type genes in the basidiomycete Coprinus cinereus. Fungal Genet Biol 23:95–109

    PubMed  Google Scholar 

  • Kinoshita H, Sen K, Iwama H, Samadder PP, Kurosawa S, Shibai H (2002) Effects of indole and caffeine on CAMP in the ind1 and cfn1 mutant strains of Schizophyllum commune during sexual development. FEMS Microbiol Lett 206:247–251

    PubMed  CAS  Google Scholar 

  • Kitamoto Y, Gruen HE (1976) Distribution of cellular carbohydrates during development of the mycelium and fruitbodies of Flammulina velutipes. Plant Physiol 58:485–491

    PubMed  CAS  Google Scholar 

  • Kitamoto Y, Horikoshi T, Suzuki A (1974) An action spectrum for photoinduction of pileus formation in a Basidiomycete Flavolus arcularius. Planta 119:81–84

    Google Scholar 

  • Koltin Y (1970) Development of the AmutBmut strain of Schizophyllum commune. Arch Microbiol 74:123–128

    Google Scholar 

  • Koltin Y, Raper JR (1968) Dikaryosis genetic determination in Schizophyllum commune. Science 60:85–86

    Google Scholar 

  • Kothe E (2001) Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 56:602–612

    PubMed  CAS  Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    PubMed  Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    PubMed  Google Scholar 

  • Kües U, Künzler M, Bottoli APF, Walser PJ, Granado JD, Liu Yi, Bertossa RC, Ciardo D, Clergeot P-H, Loos S et al. (2004) Mushroom development in higher basidiomycetes; implications for human and animal health. In: Kushwaha RKS (ed) Fungi in human and animal health. Scientific Publishers, Jodhpur, India, pp 431–469

    Google Scholar 

  • Labarère J, Noel T (1992) Mating type switching in the tetrapolar basidiomycete Agrocybe aegerita. Genetics 131:307–319

    PubMed  Google Scholar 

  • Leatham GF (1985) Growth and development of Lentinus edodes on chemically defined medium. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 403–427

    Google Scholar 

  • Leatham GF, Stahmann MA (1981) Studies on the laccase of Lentinus edodus: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 125:147–157

    CAS  Google Scholar 

  • Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    PubMed  CAS  Google Scholar 

  • Leonard TJ, Phillips LE (1973) Studies of phenoloxidase activity during the reproductive cycle in Schizophyllum commune. J Bacteriol 114:7–10

    PubMed  CAS  Google Scholar 

  • Leslie JF, Leonard TJ (1979a) Three independent genetic systems that control initiation of a fungal fruit body. Mol Gen Genet 171:257–260

    Google Scholar 

  • Leslie JF, Leonard TJ (1979b) Monokaryotic fruiting in Schizophyllum commune: genetic control of the response to mechanical injury. Mol Gen Genet 175:5–12

    Google Scholar 

  • Lu BC (1974) Meiosis in Coprinus. Role of light on basidiocarp initiation, mitosis, and hymenium differentiation in Coprinus lagopodus. Can J Bot 52:299–308

    Google Scholar 

  • Lu BC (2000) The control of meiosis progression in the fungus Coprinus cinereus by light/dark cycles. Fungal Genet Biol 31:33–41

    PubMed  CAS  Google Scholar 

  • Lugones LG, Bosscher JS, Scholtmeijer K, de Vries OMH, Wessels JGH (1996) An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142:1321–1329

    PubMed  CAS  Google Scholar 

  • Lugones LG, Wösten HAB, Wessels JGH (1998) A hydrophobin (ABH3) secreted by the substrate myceliumof Agaricus bisporus (common white button mushroom). Microbiology 144:2345–2353

    PubMed  CAS  Google Scholar 

  • Lugones LG, Wösten HAB, Birkenkamp KU, Sjollema KA, Zagers J, Wessels JGH (1999) Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol Res 103:635–640

    CAS  Google Scholar 

  • Madelin MF (1956) The influence of light and temperature on fruiting of Coprinus lagopus Fr. in pure culture. Ann Bot 20:467–480

    Google Scholar 

  • Madelin MF (1960) Visible changes in the vegetative mycelium of Coprinus lagopus Fr. at the time of fruiting. Trans Br Mycol Soc 43:105–110

    Google Scholar 

  • Manachère G (1980) Conditions essential for controlled fruiting of macromycetes — a review. Trans Br Mycol Soc 75:255–270

    Google Scholar 

  • Manachère G (1988) Regulation of sporophore differentiation in some macromycetes, particularly in Coprini: an overview of some experimental studies from fruiting initiation to sporogenesis. Cryptogamie Mycol 9:291–323

    Google Scholar 

  • Meskauskas A, Mc Nulty LJ, Moore D (2004) Concerted regulation of all hyphal tips generates fungal fruit body structures: experiments with computer visualizations produced by a new mathematical model of hyphal growth. Mycol Res 108:341–353

    PubMed  Google Scholar 

  • Mizushina Y, Hanashima L, Yamaguchi T, Takemura M, Sugawara F, Saneyoshi M, Matsukage A, Yoshida S, Sakaguchi K (1998) A mushroom fruiting body-inducing substance inhibits activities of replicative DNA polymerases. Biochem Biophys Res Commun 249:17–22

    PubMed  CAS  Google Scholar 

  • Money N (2004) Theoretical biology — mushrooms in cyberspace. Nature 431:32

    PubMed  CAS  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Moore D, Casselton LA, Wood DA, Frankland JC (eds) (1985) Developmental biology of higher fungi. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Moukha SM, Wösten HAB, Asther M, Wessels JGH (1993) In situ localization of lignin peroxidase excretion in colonies of Phanerochaete chrysosporium using sandwiched mode of culture. J Gen Microbiol 139:969–978

    PubMed  CAS  Google Scholar 

  • Mulder GH, Wessels JGH (1986) Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune. Exp Mycol 10:214–227

    CAS  Google Scholar 

  • Muraguchi H, Kamada T (1998) The ich1 gene of themushroom Coprinus cinereus is essential for pileus formation in fruiting. Development 125:3133–3141

    PubMed  CAS  Google Scholar 

  • Muraguchi H, Kamada T (2000) A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genet Biol 29:49–59

    PubMed  CAS  Google Scholar 

  • Muraguchi H, Takemaru T, Kamada K (1999) Isolation and characterization of developmental variants in fruiting using a homokaryotic fruiting strain of Coprinus cinereus. Mycoscience 40:227–235

    Google Scholar 

  • Murata Y, Fujii M, Zolan ME, Kamada T (1998) Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149:1753–1761

    PubMed  CAS  Google Scholar 

  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462

    PubMed  CAS  Google Scholar 

  • Niederpruem DJ (1963) Role of carbon dioxide in the control of fruiting of Schizophyllum commune. J Bacteriol 85:1300–1308

    PubMed  CAS  Google Scholar 

  • Niederpruem DJ, Wessels JGH (1969) Cytodifferentiation and morphogenesis in Schizophyllum commune. Bacteriol Rev 33:505–535

    PubMed  CAS  Google Scholar 

  • Perkins JH (1969) Morphogenesis in Schizophyllum commune. I. Effects of white light. Plant Physiol 44:1706–1711

    PubMed  CAS  Google Scholar 

  • Perkins JH, Raper JR (1970) Morphogenesis in Schizophyllum commune. III. Mutation that blocks initiation of fruiting. Mol Gen Genet 106:151–154

    PubMed  CAS  Google Scholar 

  • Phillips LE, Leonard TJ (1976) Extracellular and intracellular phenoloxidase activity during growth and development in Schizophyllum commune. Mycologia 68:268–276

    CAS  Google Scholar 

  • Raper CA (1976) Sexuality and life cycle of the edible, wild Agaricus bitorquis. J Gen Microbiol 95:54–66

    Google Scholar 

  • Raper JR, Krongelb GS (1958) Genetic and environmental aspects of fruiting in Schizophyllum commune. Mycologia 59:707–740

    Google Scholar 

  • Raper JR, Miles PG (1958) The genetics of Schizophyllum commune. Genetics 43:530–546

    Google Scholar 

  • Raper JR, Boyd DH, Raper CA (1965) Primary and secondary mutations at the incompatibility loci in Schizophyllum. Proc Natl Acad Sci USA 53:1324–1332

    PubMed  CAS  Google Scholar 

  • Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64:1088–1117

    Google Scholar 

  • Raudaskoski M, Salonen M (1983) Interrelationships between vegetative development and basidiocarp initiation. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 291–322

    Google Scholar 

  • Raudaskoski M, Vauras R (1982) Scanning electron microscope study of fruit body differentiation in Schizophyllum commune. Trans Br Mycol Soc 78:89–96

    Google Scholar 

  • Raudaskoski M, Viitanen H (1982) Effects of aeration and light on fruit-body induction in Schizophyllum commune. Trans Br Mycol Soc 78:89–96

    Google Scholar 

  • Raudaskoski M, Yli-Mattila T (1985) Capacity for photoinduced fruiting in the dikaryon of Schizophyllum commune. Trans Br Mycol Soc 85:145–151

    Google Scholar 

  • Rayner AD (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71

    Google Scholar 

  • Reijnders AFM, Stafleu JA (1992) The development of the hymenophoral trama in the Aphylophorales and Agaricales. Stud Mycol 34:1–109

    Google Scholar 

  • Reyes F, Lahoz R, Vasques C (1980) Lytic enzymes in the autolysis of Schizophyllum commune with special reference to 1,3-α-glucanase. Can JMicrobiol 26:1120–1125

    CAS  Google Scholar 

  • Robert JC (1977) Fruiting of Coprinus congregatus: relationship to biochemical changes in the whole culture. Trans Br Mycol Soc 68:389–395

    Google Scholar 

  • Romeis T, Brachmann A, Kahmann R, Kämper J (2000) Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol 37:54–66

    PubMed  CAS  Google Scholar 

  • Ross IK (1982) Location of carpophore initiation in Coprinus congregatus. J Gen Microbiol 128:2755–2762

    Google Scholar 

  • Ruiters MHJ, Wessels JGH (1989a) In situ localization of specific RNAs in whole fruiting colonies of Schizophyllum commune. J Gen Microbiol 135:1747–1754

    CAS  Google Scholar 

  • Ruiters MHJ, Wessels JGH (1989b) In situ localization of specific RNAs in developing fruit bodies of the basidiomycete Schizophyllum commune. Exp Mycol 13:212–222

    Google Scholar 

  • Ruiters MHJ, Sietsma JH, Wessels JGH (1988) Expression of dikaryon-specific mRNAs of Schizophyllum commune in relation to incompatibility genes, light, and fruiting. Exp Mycol 12:60–69

    Google Scholar 

  • Sakurai N, Kaneko J, Kamio Y, Tomita T (2004) Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelinspecific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim Biophys Acta Gene Struct Expression 1679:65–73

    CAS  Google Scholar 

  • Sánchez C, Moore D (1999) Conventional histological stains selectively stain fruit body initials of basidiomycetes. Mycol Res 103:315–318

    Google Scholar 

  • Sánchez C, Tellez-Tellez M, Diaz-Godinez G, Moore D (2004) Simple staining detects ultrastructural and biochemical differentiation of vegetative hyphae and fruit body initials in colonies of Pleurotus pulmonarius. Lett Appl Microbiol 38:483–487

    PubMed  Google Scholar 

  • Schuren FHJ (1999) Atypical interactions between the thn andwild-typemycelia of Schizophyllum commune. Mycol Res 103:1540–1544

    Google Scholar 

  • Schuren FHJ, Wessels JGH (1990) Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. Gene 90:199–205

    PubMed  CAS  Google Scholar 

  • Schuren FHJ, van der Lende T, Wessels JGH (1993a) Fruiting genes of Schizophyllum commune are transcriptionally regulated. Mycol Res 97:538–542

    Google Scholar 

  • Schuren FHJ, Harmsen MC, Wessels JGH (1993b) A homologous gene-reporter system for the basidiomycete Schizophyllum commune based on internally deleted genes. Mol Gen Genet 238:91–96

    PubMed  CAS  Google Scholar 

  • Schuren FHJ, Ásgeirsdóttir SA, Kothe EM, Scheer JMJ, Wessels JGH (1993c) The Sc7/Sc14 gene family of Schizophyllum commune codes for extracellular proteins specifically expressed during fruit-body formation. J Gen Microbiol 139:2083–2090

    PubMed  CAS  Google Scholar 

  • Schuurs TA, Dalstra HJP, Scheer JMJ, Wessels JGH (1998) Positioning of nuclei in secondarymyceliumof Schizophyllum commune in relation to differential gene expression. Fungal Genet Biol 23:150–161

    PubMed  CAS  Google Scholar 

  • Schwalb MN (1974) Changes in activity of enzymes metabolizing glucose-6-phosphateduring development of the basidiomycete Schizophyllum commune. Dev Biol 40:84–89

    PubMed  CAS  Google Scholar 

  • Schwalb MN (1977) Developmentally regulated proteases from the basidiomycete Schizophyllum commune. J Biol Chem 225:8435–8439

    Google Scholar 

  • Schwalb MN (1978) Regulation of fruiting. In Schwalb MN, Miles PG (eds) Genetics and morphogenesis in the basidiomycetes. Academic Press, New York, pp 135–165

    Google Scholar 

  • Schwalb MN, Miles PG (1967) Morphogenesis of Schizophyllum commune. I. Morphological variation and mating behaviour of the thin mutation. Am J Bot 54:440–446

    Google Scholar 

  • Sepčić K, Berne S, Potrich C, Turk T, Maček P, Menestrina G (2003) Interaction of ostreolysin, a cytolytic protein fromthe ediblemushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem 270:1199–1210

    PubMed  Google Scholar 

  • Sepčić K, Berne S, Rebolj K, Batista UK, Plemenitas A, Sentjurc M, Maček P (2004) Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 575:81–85

    PubMed  Google Scholar 

  • Sietsma JH, Wessels JGH (1977) Chemical analysis of the hyphal wall of Schizophyllum commune. Biochim Biophys Acta 496:225–239

    PubMed  CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1979) Evidence for covalent linkages between chitin and β-glucan in a fungal wall. J Gen Microbiol 114:99–108

    CAS  Google Scholar 

  • Sietsma JH, Rast D, Wessels JGH (1977) The effect of carbon dioxide on fruiting and on the degradation of a cellwall glucan in Schizophyllum commune. J Gen Microbiol 102:385–389

    CAS  Google Scholar 

  • Sirand-Pugnet P, Labarère J (2002) Molecular characterization of the PRI3 gene encoding a cysteine-rich protein, specifically expressed during fruiting initiation within the Agrocybe aegerita complex. Curr Genet 41:31–42

    PubMed  CAS  Google Scholar 

  • Sirand-Pugnet P, Santos C, Labarère J (2003) The Aa-Pri4 gene, specifically expressed during fruiting initiation in the Agrocybe aegerita complex, contains an unusual CT-rich leader intron within the 5′ uncoding region. Curr Genet 44:124–131

    PubMed  CAS  Google Scholar 

  • Spiegel S, English D, Milstien S (2002) Spingosine-1-phosphate signalling: providing cells with sense of direction. Trends Cell Biol 12:236–242

    PubMed  CAS  Google Scholar 

  • Springer J, Wessels JGH (1989) A frequently occurring mutation that blocks the expression of fruiting genes in Schizophyllum commune. Mol Gen Genet 219:486–488

    CAS  Google Scholar 

  • Stahl U, Esser K (1976) Genetics of fruit-body production in higher basidiomycetes I. Monokaryotic fruiting and its correlation with dikaryotic fruiting in Polyporus ciliatus. Mol Gen Genet 148:183–197

    Google Scholar 

  • Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11 + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:1990–1999

    PubMed  CAS  Google Scholar 

  • Sun H, Zhao CG, Tong X, Qi YP (2003) A lectin with mycelia differentiation and antiphytovirus activities from the edible mushroom Agrocybe aegerita. J Biochem Mol Biol 36:214–222

    PubMed  CAS  Google Scholar 

  • Swamy S, Uno I, Ishikawa T (1984) Morphogenetic effects of mutations at the A and B incompatibility factors in Coprinus cinereus. J Gen Microbiol 130:3219–3224

    Google Scholar 

  • Swamy S, Uno I, Ishikawa T (1985a) Regulation of cyclic AMP metabolism by the incompatibility factors in Coprinus cinereus. J Gen Microbiol 131:3211–3217

    CAS  Google Scholar 

  • Swamy S, Uno I, Ishikawa T (1985b) Regulation of cyclic AMP-dependent phosphorylation of cellular proteins by the incompatibility factors in Coprinus cinereus. J Gen Appl Microbiol 31:339–346

    CAS  Google Scholar 

  • Takagi Y, Katayose Y, Shishido K (1988) Intracellular levels of cyclic AMP and adenylate cyclase activity during mycelial development in fruiting body formation in L. edodes. FEMS Microbiol Lett 55:275–278

    CAS  Google Scholar 

  • Takemaru T, Kamada T (1972) Basidiocarp development in Coprinus macrorhizus. I. Induction of developmental variations. Bot Mag (Tokyo) 85:51–57

    CAS  Google Scholar 

  • Toledo I, Hansberg W (1990) Protein oxidation related to morphogenesis in Neurospora crassa. Exp Mycol 14:184–189

    CAS  Google Scholar 

  • Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982

    PubMed  CAS  Google Scholar 

  • Tsusué YM (1969) Experimental control of fruit-body formation in Coprinus macrorhizus. Dev Growth Diff 11:164–178

    Google Scholar 

  • Ullrich RC, Anderson JB (1978) Sex and diploidy in Arnillaria mellea. Exp Mycol 2:119–129

    Google Scholar 

  • Umar MH, van Griensven LJLD (1997) Morphogenetic cell death in developing primordia of Agaricus bisporus. Mycologia 89:274–277

    Google Scholar 

  • Uno I, Ishikawa T (1971) Chemical and genetical control of induction of monokaryotic fruiting bodies in Coprinus macrorhizus. Mol Gen Genet 113:228–239

    CAS  Google Scholar 

  • Uno I, Ishikawa T (1973) Purification and identification of the fruiting inducing substances in Coprinus macrorhizus. J Bacteriol 113:1240–1248

    PubMed  CAS  Google Scholar 

  • Uno I, Ishikawa T (1982) Biochemical and genetic studies on the initial events of fruit-body formation. In: Wells K, Wells EK (eds) Basidium and basidiocarp. Springer, Berlin Heidelberg New York, pp 113–123

    Google Scholar 

  • Uno I, Yamaguchi M, Ishikawa T (1974) The effect of light on fruiting body formation and adenosine 3′,5′-cyclic monophosphate metabolism in Coprinusmacrorhizus. Proc Natl Acad Sci USA 71:479–483

    PubMed  CAS  Google Scholar 

  • Urban M, Kahmann R, Bölker M (1996) Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet 251:31–37

    PubMed  CAS  Google Scholar 

  • Van der Valk P, Marchant R (1978) Hyphal ultrastructure in fruit body primordial of the basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma 95:57–72

    Google Scholar 

  • Van Griensven LJLD (ed) (1988) The cultivation of mushrooms. Darlington Mushroom Laboratories, Rustington, Sussex, UK

    Google Scholar 

  • Van Wetter MA, Schuren FHJ, Wessels JGH (1996) Targeted mutation of the Sc3 hydrophobin gene of Schizophyllum commune affects formation of aerialhyphae. FEMS Microbiol Lett 140:265–270

    Google Scholar 

  • Van Wetter MA, Wösten HAB, Wessels JGH (2000a) SC3 and SC4 hydrophobins have distinct functions in formation of aerial structures in dikaryons of Schizophyllum commune. Mol Microbiol 36:201–210

    PubMed  Google Scholar 

  • Van Wetter MA, Wösten HAB, Sietsma JH, Wessels JGH (2000b) Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet Biol 31:99–104

    PubMed  Google Scholar 

  • Walser PJ, Velagapudi R, Aebi M, Kües U (2003) Extracellular matrix proteins in mushroom development. Rec Res Dev Microbiol 7:381–415

    CAS  Google Scholar 

  • Walser PJ, Haebel PW, Kunzler M, Sargent D, Kues U, Aebi M, Ban N (2004) Structure and functional analysis of the fungal galectin CGL2. Structure 12:689–702

    PubMed  CAS  Google Scholar 

  • Walser PJ, Kues U, Aebi M, Kunzler M (2005) Ligand interactions of the Coprinopsis cinerea galectins. Fungal Genet Biol 42:293–305

    PubMed  CAS  Google Scholar 

  • Wang H, Ng TB, Ooi VEC (1998) Lectins from mushrooms. Mycol Res 102:897–906

    CAS  Google Scholar 

  • Wang P, Cutler J, King J, Palmer D (2004) Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot Cell 3:1028–1035

    PubMed  CAS  Google Scholar 

  • Watling R (1996) Patterns in fungal development — fruiting patterns in nature. In: Chiu S-W, Moore D (eds) Patterns in fungal development. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wells K, Wells EK (eds) (1982) Basidium and basidiocarp. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wessels JGH (1965) Morphological and biochemical processes in Schizophyllum commune. Wentia 13:1–113

    Google Scholar 

  • Wessels JGH (1966) Control of cell-wall glucan degradation during development in Schizophyllum commune. Antonie van Leeuwenhoek J Microbiol Serol 32:341–355

    CAS  Google Scholar 

  • Wessels JGH (1969) A β-1,6-glucan glucanohydrolase involved in hydrolysis of cell wall glucan in Schizophyllum commune. Biochim Biophys Acta 178:191–193

    PubMed  CAS  Google Scholar 

  • Wessels JGH (1986) Cell wall synthesis in apical hyphal growth. Int Rev Cytol 104:37–79

    CAS  Google Scholar 

  • Wessels JGH (1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth of plant and fungal cells. Academic Press, San Diego, pp 1–29

    Google Scholar 

  • Wessels JGH (1992) Gene expression during fruiting in Schizophyllum commune. Mycol Res 96:609–620

    CAS  Google Scholar 

  • Wessels JGH (1993a) Fruiting in the higher fungi. Adv Microb Physiol 34:147–202

    PubMed  CAS  Google Scholar 

  • Wessels JGH (1993b) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413

    CAS  Google Scholar 

  • Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437

    CAS  Google Scholar 

  • Wessels JGH (1996) Fungal hydrophobins: proteins that function at an interface. Trends Plant Sci 1:9–15

    Google Scholar 

  • Wessels JGH (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    PubMed  CAS  Google Scholar 

  • Wessels JGH, Marchant JR (1974) Enzymatic degradation in hyphal wall preparations from a monokaryon and adikaryonof Schizophyllum commune. J Gen Microbiol 83:359–368

    Google Scholar 

  • Wessels JGH, Sietsma JH (1979) Wall structure and growth in Schizophyllum commune. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Cambridge University Press, Cambridge, pp 27–48

    Google Scholar 

  • Wessels JGH, Kreger DR, Marchant R, Regenburg BA, de Vries OMH (1972) Chemical and morphological characterization of the hyphal wall surface of the basidiomycete Schizophyllum commune. Biochim Biophys Acta 273:346–358

    PubMed  CAS  Google Scholar 

  • Wessels JGH, Dons JJM, de Vries OMH (1985) Molecular biology of fruit body formation in Schizophyllum commune. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 485–497

    Google Scholar 

  • Wessels JGH, Mulder GH, Springer J (1987) Expression of dikaryon-specific and non-specific mRNAs of Schizophyllum commune in relation to environmental conditions and fruiting. J Gen Microbiol 133:2557–2561

    CAS  Google Scholar 

  • Wessels JGH, de Vries OMH, Ásgeirsdóttir SA, Schuren FHJ (1991a) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799

    PubMed  CAS  Google Scholar 

  • Wessels JGH, de Vries OMH, Ásgeirsdóttir SA, Springer J (1991b) The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J Gen Microbiol 137:2439–2445

    PubMed  CAS  Google Scholar 

  • Wessels JGH, Ásgeirsdóttir SA, Birkenkamp KU, de Vries OMH, Lugones LG, Scheer JMJ, Schuren FHJ, Schuurs TA, van Wetter M-A, Wösten HAB (1995) Genetic regulation of emergent growth in Schizophyllum commune. Can J Bot 73:S273–S281

    CAS  Google Scholar 

  • Wessels JGH, Schuurs TA, Dalstra HJP, Scheer JMJ (1998) Nuclear distribution and gene expression in the secondary mycelium of Schizophyllum commune. In: Gow N, Robson G, Gadd G (eds) The fungal colony. Cambridge University Press, Cambridge, pp 302–325

    Google Scholar 

  • White NA, Boddy L (1992) Differential extracellular enzyme production in colonies of Coriolus versicolor, Phlebia radiata and Phlebia rufa. J Gen Microbiol 138:2589–2598

    CAS  Google Scholar 

  • Whitehouse HLK (1949) Multiple allelomorph heterothallism in the fungi. New Phytol 48:212–244

    Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55: 625–646

    PubMed  Google Scholar 

  • Wösten HAB, de Vocht ML (2000) Hydrophobins, the fungal coating unravelled. Biochim Biophys Acta Rev Biomembranes 1469:79–86

    Google Scholar 

  • Wösten HAB, Wessels JGH (1997) Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363–374

    Google Scholar 

  • Wösten HAB, Willey JM (2000) Surface active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146:767–773

    PubMed  Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2024

    PubMed  Google Scholar 

  • Wösten HAB, de Vries OMH, Wessels JGH (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574

    PubMed  Google Scholar 

  • Wösten HAB, Ásgeirsdóttir SA, Krook JH, Drenth JHH, Wessels JGH (1994a) The Sc3p hydrophobin self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Eur J Cell Biol 63:122–129

    PubMed  Google Scholar 

  • Wösten HAB, Schuren FHJ, Wessels JGH (1994b) Interfacial self-assembly of a hydrophobin into an amphipathic membranemediates fungal attachment tohydrophobic surfaces. EMBO J 13:5848–54

    PubMed  Google Scholar 

  • Wösten HAB, Ruardy TG, van der Mei HC, Busscher HJ, Wessels JGH (1995) Interfacial self-assembly of a Schizophyllum commune hydrophobin into an insoluble amphipathic membrane depends on surface hydrophobicity. Colloids Surfaces B Biointerfaces 5:189–195

    Google Scholar 

  • Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88

    PubMed  Google Scholar 

  • Wuest PJ, Royce DJ, Beelman RB (eds) (1987) Cultivating edible fungi. Elsevier, Amsterdam

    Google Scholar 

  • Yagi F, Hiroyama H, Kodama S (2001) Agrocybe cylindracea lectin is a member of the galectin family. Glycoconjugate J 18:745–749

    CAS  Google Scholar 

  • Yamagishi K, Kimura T, Suzuki M, Shinmoto H (2002) Suppression of fruit-body formation by constitutively active G-protein alpha-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune. Microbiology 148:2797–2809

    PubMed  CAS  Google Scholar 

  • Yamagishi K, Kimura T, Suzuki M, Shinmoto H, Yamaki KJ (2004) Elevation of intracellular cAMP levels by dominant active heterotrimeric G protein alpha Subunits ScGP-A and ScGP-C in homobasidiomycete, Schizophyllum commune. Biosci Biotechnol Biochem 68:1017–1026

    PubMed  CAS  Google Scholar 

  • Yli-Mattila T (1987) The effect of UV-Alight on cAMP in the basidiomycete Schizophyllum commune. Physiol Plant 69:451–455

    CAS  Google Scholar 

  • Yli-Mattila T, Raudaskoski M (1992) Glucoamylase activity and water-soluble polysaccharides during monokaryotic and dikaryotic fruiting in Schizophyllum commune. Mycol Res 96:597–604

    CAS  Google Scholar 

  • Yli-Mattila T, Ruiters MHJ, Wessels JGH (1989a) Photoregulation of dikaryon-specific mRNAs and proteins by UV-A light in Schizophyllum commune. Curr Microbiol 18:289–295

    CAS  Google Scholar 

  • Yli-Mattila T, Ruiters MHJ, Wessels JGH, Raudaskoski M (1989b) Effect of inbreeding and light on monokaryotic and dikaryotic fruiting in the basidiomycete Schizophyllum commune. Mycol Res 93:535–542

    Google Scholar 

  • Yuki K, Akiyama M, Muraguchi H, Kamada T (2003) The dst1 gene responsible for a photomorphogeneticmutation in Coprinus cinereus encodes a protein with high similarity to WC-1. Fungal Genet Newslett Suppl 50 abstr 147

    Google Scholar 

  • Zhao J, Kwan HS (1999) Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl Environ Microbiol 65:4908–4913

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wösten, H.A.B., Wessels, J.G.H. (2006). The Emergence of Fruiting Bodies in Basidiomycetes. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_19

Download citation

Publish with us

Policies and ethics