Skip to main content

Molecular Electronics: from Physics to Computing

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aharonov, J. Anandan (1990) Geometry of quantum evolution. Phys. Rev. Lett. 65:1697–1700.

    MathSciNet  Google Scholar 

  2. Y. Aharonov, D. Bohm (1961) Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122:1649–1658.

    MathSciNet  Google Scholar 

  3. Y. Aharonov, D. Bohm (1964) Answer to Fock concerning the time energy indeterminacy relation. Phys. Rev. 134:1417–1418.

    MathSciNet  Google Scholar 

  4. P. Allmen, K. Hess (1995) Dynamics of an atomic switch computed by first-principles molecular dynamics. Phys. Rev. B 52:5243.

    Google Scholar 

  5. S. Auvray, J. Borghetti, M.F. Goffman, A. Filoramo, V. Derycke, J.P. Bourgoin, O. Jost (2004) Carbon nanotube transistor optimization by chemical control of the nanotube-metal interface. Appl. Phys. Lett. 84:5106–5108.

    Google Scholar 

  6. Ph. Avouris, J. Appenzeller, R. Martel, S.J. Wind (2003) Carbon nanotube electronics. Proc. IEEE 91:1772–1784.

    Google Scholar 

  7. G. Baccarani, M.R. Wordeman, R.H. Dennard (1984) Submicrometer MOSFET design. IEEE Trans. Electron Devices ED-31:452–462.

    Google Scholar 

  8. J. Bardeen, W.H. Brattain (1948) The transistor, a semi-conductor triode. Phys. Rev. 74:230–231.

    Google Scholar 

  9. J.D. Beckenstein (1981) Energy cost of information transfer. Phys. Rev. Lett. 46:623–626.

    MathSciNet  Google Scholar 

  10. C.H. Bennett (1973) Logical reversibility of computation. IBM J. Res. Dev. 17:525–533.

    MATH  Google Scholar 

  11. C.H. Bennett (1982) The thermodynamics of computation: a review. Int. J. Theor. Phys. 21:905–940.

    Google Scholar 

  12. G.A.D. Briggs, A.J. Fish (1999) STM experiment and atomistic modelling hand in hand: individual molecules on semiconductor surfaces. Surf. Sci. Rep. 33:1–81.

    Google Scholar 

  13. M. Butts, A. Dehon, S,C, Goldstein (2002) Nanoelectronics: devices, systems and tools for gigagate, gigabit chips. Proceedings of the International Conference on Computer-Aided Design, pp 433–440.

    Google Scholar 

  14. J. Cao, Q. Wang, D. Wang, H. Dai (2005) Suspended carbon nanotube quantum wires with two gates. Small 1:138–141.

    Google Scholar 

  15. F. Capasso, eds. (1990) Physics of Quantum Electron Devices. Springer, Berlin.

    Google Scholar 

  16. G.K. Celler, S. Cristoloveanu (2003) Frontiers of silicon-on-insulator. J. Appl. Phys. 93:4955–4978.

    Google Scholar 

  17. L. Chang, Y.K. Choi, H.A. Daewon, P. Ranade, S. Xiong, J. Bokor, C. Hu, T.J. King (2003) Extremely scaled silicon nano-CMOS devices. Proc. IEEE 91:1860–1873.

    Google Scholar 

  18. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550.

    Google Scholar 

  19. P.W. Chiu, M. Kaempgen, S. Roth (2004) Band-structure modulation in carbon nanotube T junctions. Phys. Rev. Lett. 92:246802.

    Google Scholar 

  20. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath (1999) Electronically configurable molecular-based logic gates. Science 285:391.

    Google Scholar 

  21. C.P. Collier, G. Matterstreig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath (2000) A catenane-based solid state reconfigurable switch. Science 289:1172.

    Google Scholar 

  22. Y. Cui, C.M. Lieber (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853.

    Google Scholar 

  23. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber (2003) High performance silicon nanowire field effect transistors. Nano Lett. 3:149–152.

    Google Scholar 

  24. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574.

    Google Scholar 

  25. H. Dai (2002) Carbon nanotubes: opportunities and challenges. Surf. Sci. 500:218–241.

    Google Scholar 

  26. S. Datta (1995) Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  27. S. de Hann, A. Lorke, J.P. Kotthaus, Wegscheider, M. Bichler (2004) Rectification in mesoscopic systems with broken symmetry: quasiclassical ballistic versus classical transport. Phys. Rev. Lett. 92:56806.

    Google Scholar 

  28. A. Dehon, M.J. Wilson (2004) Nanowire-based sublithographic programmable logic arrays. Proceedings of the International Symposium on Field Programmable Gate Arrays, pp. 123–132.

    Google Scholar 

  29. R.H. Dennar, F.H. Gaensslen, H.N. Yu, V.L. Ridout, E. Bassous, A.R. LeBlanc (1974) Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits 9:256.

    Google Scholar 

  30. M.R. Diehl, D.W. Steuerman, H.R. Tseng, S.A. Vignon, A. Star, P.C. Celestre, J.F. Stoddart, J.R. Heath (2003) Single-walled carbon nanotube based molecular switch tunnel junctions. Chem. Phys. Chem. 4:1335–1339.

    Google Scholar 

  31. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price, A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss (2001) Conductance Switching in Single Molecules Through Conformational Changes. Science 292:2303.

    Google Scholar 

  32. S.K. Doorn, M.K. O’Connell, L. Zheng, Y.T. Zhu, S. Huang, J. Liu (2005) Raman spectral imaging of a carbon nanotube intramolecular junction. Phys. Rev. Lett. 94:16802.

    Google Scholar 

  33. X. Duan, Y. Huang, C.M. Lieber (2002) Memory and Programmable logic from molecule-gated nanowires. Nano Lett. 2:487–490.

    Google Scholar 

  34. P.M. Fahey, P.B. Griffin, J.D. Plummer (1989) Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 61:289–384.

    Google Scholar 

  35. C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Lu, Z. Liu, S. Asano, M. Meyyappan, J. Han, C. Zhou (2004) Multilevel memory based on molecular devices. Appl. Phys. Lett. 84:1949.

    Google Scholar 

  36. C. Li, W. Fan, D.A. Straus, B. Lei, S. Asano, D. Zhang, J. Han, M. Meyyappan, C. Zhou (2004) Charge storage behavior of nanowire transistors functionalized with bis(terpyridine)-Fe(II) molecules: Dependence on Molecular Structure. J. Am. Chem. Soc. 126:7750.

    Google Scholar 

  37. R. Feynman (1960) There’s plenty of room at the bottom. Sci. Eng. 23:22.

    Google Scholar 

  38. R. Fleischmann, T. Geisel (2002) Mesoscopic rectifiers based on ballistic transport. Phys. Rev. Lett. 89:16804.

    Google Scholar 

  39. M.V. Fischetti (2003) Scaling MOSFETs to the limit: A physicists’s perspective. J. Comp. Electron 2:73–79.

    Google Scholar 

  40. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.S.P. Wong (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89:259–288.

    Google Scholar 

  41. E. Fredkin, T. Toffoli (1982) Conservative logic. Int. J. Theor. Phys. 21:311–325.

    MathSciNet  Google Scholar 

  42. M.S. Fuhrer, B.M. Kim, B. Duerkop, (2002) High-mobility nanotube transistor memory. Nano. Lett. 2:755–759.

    Google Scholar 

  43. A. Galindo, J.C. Martín-Delgado (2002) Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74:347–423.

    Google Scholar 

  44. U. Ganguly, C. Lee, E.C. Kan (2003) Interface and oxide contamination monitoring in integration of fullerenes and carbon nanotubes with aggressively scaled CMOS gate stacks. Mat. Res. Soc. Symp. Proc. 789:N16.3.

    Google Scholar 

  45. U. Ganguly, C. Lee, E.C. Kan (2005) Experimental observation of non-volatile charge injection and molecular redox in fullerenes C60 and C70 in an EEPROM type device. Mat. Res. Soc. Symp. Proc. 830:D7.5.

    Google Scholar 

  46. U. Ganguly, E.C. Kan, Y. Zhang (2005) Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals. Appl. Phys. Lett. 87:43108.

    Google Scholar 

  47. V. Giovannetti, S. Lloyd, L. Maccone (2003) Quantum limits to dynamical evolution. Phys. Rev. A 67:52109.

    Google Scholar 

  48. H. Grabert, M.H. Devoret, eds. (1992) Single Charge Tunneling. Plenum, New York.

    Google Scholar 

  49. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam (2004) Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett 4:55–59.

    Google Scholar 

  50. B. Hackens, L. Gence, C. Gustin, X. Wallart, S. Bollaert, A. Cappy, V. Bayot (2004) Sign reversal and tunable rectification in a ballistic nanojunction. Appl. Phys. Lett. 4508.

    Google Scholar 

  51. S. Hasegawaa, X. Tonga, S. Takedaa, N. Satoa, T. Nagaoa (1999) Structures and electronic transport on silicon surfaces. Prog. Surf. Sci. 60:89–257.

    Google Scholar 

  52. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams (1998) A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280:1716–1721.

    Google Scholar 

  53. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler (2002) Molecule cascades. Science 298:1381–1387.

    Google Scholar 

  54. A.J.G. Hey, R.W. Allen, eds. (1996) Feynman Lectures on Computation. Addison-Wesley, Reading.

    Google Scholar 

  55. Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C.M. Lieber (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317.

    Google Scholar 

  56. F. Jackel, M.D. Watson, K. Mullen, J.R. Rabe (2004) Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys. Rev. Lett. 92:188303.

    Google Scholar 

  57. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657.

    Google Scholar 

  58. A. Javey, D.B. Farmer, J. Guo, Q. Wang, D. Wang, R.G. Gordon, M. Lundstrom, H. Dai (2004) Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4:447–450.

    Google Scholar 

  59. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai (2004) High-field, quasi-ballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92:106804.

    Google Scholar 

  60. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber (2004) Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4:915–919.

    Google Scholar 

  61. C. Joachim, J.K. Gimzewski, A. Aviram (2000) Electronics using hybridmolecular and mono-molecular devices. Nature 408:541–548.

    Google Scholar 

  62. C. Joachim, J.K. Gimzewski, H. Tang (1998) Physical principles of the single C60 transistor effect. Phys. Rev. B 58:16407.

    Google Scholar 

  63. R.W. Keyes (1975) Physical limits in digital electronics. Proc IEEE 63:740–767.

    Google Scholar 

  64. R.W. Keyes (2001) Fundamental limits of silicon technology. Proc IEEE 89:227–239.

    Google Scholar 

  65. R.W. Keyes (1989) Physics of digital devices. Rev. Mod. Phys. 61:279–287.

    Google Scholar 

  66. R.W. Keyes (2001) The cloudy crystal ball: electronic devices for logic. Phil. Mag. B 81:1315–1330.

    Google Scholar 

  67. R.A. Kiehl, T.C.L.G. Sollner, eds. (1994) High Speed Heterostructure Devices. Academic Press, San Diego.

    Google Scholar 

  68. J.S. Kilby, (1976) Invention of the integrated circuit. IEEE Trans. Electron. Devices. ED-23:648.

    Google Scholar 

  69. U. Konig (1996) Future applications of heterostructures. Phys. Scripta T68:90–101.

    Google Scholar 

  70. P.E. Kornilovitch, A.M. Bratkovsky, R.S. Williams (2002) Bistable molecular conductors with a field-switchable dipole group. Phys. Rev. B 66:245413.

    Google Scholar 

  71. R. Landauer (1991) Information is physical. Phys. Today 44:23–29.

    Google Scholar 

  72. R. Landauer (1961) Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5:183–191.

    MathSciNet  Google Scholar 

  73. R. Landauer (1996) Minimal energy requirements in communication. Science 272:1914–1918.

    MathSciNet  Google Scholar 

  74. N.D. Lang, (1998) Conductance calculations for the atomic relay. Superlatt Microstruct 23:731.

    Google Scholar 

  75. J.D. Le, Y. He, T.R. Hoye, C.C. Mead, R.A. Kiehl (2003) Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83:5518.

    Google Scholar 

  76. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld (2005) Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97:11101–11128.

    Google Scholar 

  77. J.U. Lee, P.P. Gipp, C.M. Heller (2004) Carbon nanotube pn junction diodes. Appl. Phys. Lett. 85:145–147.

    Google Scholar 

  78. J.O. Lee, G. Lientschnig, T. Wiertz, M. Struijk, R.A.J. Janssen, R. Egberink, D.N. Reinhoudt, P. Hadley, C. Dekker (2003) Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Lett. 3:113–117.

    Google Scholar 

  79. H.S. Leff, A.F. Rex, eds. (2003) Maxwell’s Demon 2. Institute of Physics Publishing, Bristol, Philadephia.

    Google Scholar 

  80. F. Leonard, J. Tersoff (2000) Role of fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84:4693.

    Google Scholar 

  81. L.B. Levitin (1998) Energy cost of information transmission (along the path to understanding). Physica D 120:162–167.

    Google Scholar 

  82. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park (2002) Kondo resonance in a single-molecule transistor. Nature 417:725–729.

    Google Scholar 

  83. C.M. Lieber (2003) Nanoscale science and technology: building a big future from small things. MRS Bulletin 28:486–491.

    Google Scholar 

  84. K.K. Likharev (1999) Single electron devices and their applications. Proc. IEEE 87:606–632.

    Google Scholar 

  85. K.K Likharev (2003) Electronics below 10 nm. In: J. Greer (eds.) Nano and Giga Challenges in Microelectronics. Elsevier, Amsterdam.

    Google Scholar 

  86. X. Liu, R. Lee, J. Han, C. Zhou (2001) Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79:3329.

    Google Scholar 

  87. Z. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan (2002) Metal nanocrystal memories, part I: device design and fabrication. IEEE Trans. Electron Devices 49:1606.

    Google Scholar 

  88. S. Lloyd (2000) Ultimate physical limits to computation. Nature 406:1047–1054.

    Google Scholar 

  89. S. Lloyd, V. Giovannetti, L. Maccone (2004) Physical limits to communication. Phys. Rev. Lett. 93:100501.

    Google Scholar 

  90. Ch. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Luthi, R. Schlitter, J.K. Gimzewski, H. Tang, C. Joachim (2003) Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90:66107.

    Google Scholar 

  91. M. Lundstrom (1997) Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18:361.

    Google Scholar 

  92. H. Yu, Y. Luo, K. Beverly, J.F. Stoddart, H.R. Tseng, J.R. Heath (2003) The molecule-electrode interface in single-molecule transistors. Angew. Chem. Int. Ed. 42:5706–5711.

    Google Scholar 

  93. S. Luryi, J. Xu, A. Zaslavsky, eds. (2004) Future Trends in Microelectronics: The Nano, the Giga and the Ultra. Wiley, New York.

    Google Scholar 

  94. P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun, G.I. Haddard (1998) Digital circuit application of resonant tunneling devices. Proc. IEEE 86:664–686.

    Google Scholar 

  95. N. Margolus, L.B. Levitin (1998) The maximum speed of dynamical evolution. Physica D 120:188–195.

    Google Scholar 

  96. P.L. McEuen, M.S. Fuhrer, H. Park (2002) Single-walled carbon nanotube electronics. IEEE Trans. Nanotech. 1:78–85.

    Google Scholar 

  97. J.D. Meindl, Q. Chen, J.A. Davis (2001) Limits on silicon nanoelectronics for terascale integration. Science 293:2044–2049.

    Google Scholar 

  98. J.D. Meindl, J.A. Davis (2000) The fundamental limit on binary switching energy for terascale integration. IEEE J. Solid State Circuits 35:1515–1516.

    Google Scholar 

  99. J.D. Meindl, J.A. Davis, P. Zarkesh-Ha, C.S. Patel, K.P. Martin, P.A. Kohl (2002) Interconnect opportunities for gigascale integration. IBM J. Res. Dev. 46:245.

    Google Scholar 

  100. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, J.R. Heath (2003) Ultrahigh-density nanowire lattices and circuits. Science 112–115.

    Google Scholar 

  101. M. Menon, D. Srivastava (1997) Carbon nanotube T junctions: nanoscale metal-semiconductor-metal contact devices. Phys. Rev. Lett. 79:4453–4456.

    Google Scholar 

  102. M. Menon, A.N. Andriotis, D. Srivastava, I. Ponomareva, L.A. Chernozatonskii (2003) Carbon nanotube T junctions: formation pathways and conductivity. Phys. Rev. Lett. 91:145501.

    Google Scholar 

  103. F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, C. Joachim (2001) Conformational changes of single molecules induced by STM manipulation: a route to molecular switching. Phys. Rev. Lett. 86:672.

    Google Scholar 

  104. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp (1999) The electronic structure at the atomic scale of ultra-thin gate oxides. Nature 399:758–760.

    Google Scholar 

  105. A. Naeemi, R. Sarvari, J.D. Meindl (2005) Private communications.

    Google Scholar 

  106. K. Nakazato, R.J. Blaikie, H. Ahmed (1994) Single electron memory. J. Appl. Phys. 75:5123.

    Google Scholar 

  107. M.A. Nielsen, I.L. Chuang (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.

    Google Scholar 

  108. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu (2000) Electronic transport in Y-junction carbon nanotubes. Phys. Rev. Lett. 85:3476–3479.

    Google Scholar 

  109. J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen (2004) Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4: 517.

    Google Scholar 

  110. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen (2000) Nanomechanical oscillations in a single-C 60 transistor. Nature 407:57–60.

    Google Scholar 

  111. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725.

    Google Scholar 

  112. A.N. Pasupathy, J. Park, C. Chang, A.V. Soldatov, S. Lebedkin, R.C. Bialczak, J.E. Grose, L.A.K. Donev, J.P. Sethna, D.C. Ralph, P.L. McEuen (2005) Vibration-assisted electron tunneling in C140 single-molecule transistors. Nano Lett. 5:203–207.

    Google Scholar 

  113. V. Perebenios, J. Tersoff, Ph. Avouris (2005) Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94:86802.

    Google Scholar 

  114. J.R. Petta, D.G. Salinas, D.C Ralph (2000) Measurements of discrete electronic states in a gold nanoparticle using tunnel junctions formed from self-assembled monolayers. Appl. Phys. Lett. 77:4419.

    Google Scholar 

  115. P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow (2005) Field regulation of single-molecule conductivity by a charged surface atom. Nature 435:658–661.

    Google Scholar 

  116. J.D. Plummer, P.B. Griffin (2001) Material and process limits in silicon VLSI technology. Proc. IEEE 89:240–258.

    Google Scholar 

  117. H.W. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:76–79.

    Google Scholar 

  118. A. Rakitin, C. Papadopoulos, J.M. Xu (2003) Carbon nanotube self-doping. Phys. Rev. B 67:33411.

    Google Scholar 

  119. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay (2003) Reproducible measurement of single-molecule conductivity. Science 300:1413.

    Google Scholar 

  120. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour (2001) Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 78:3735.

    Google Scholar 

  121. S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, P.L. McEuen (2005) Mixing at 50GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett. 87:153111.

    Google Scholar 

  122. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2:869.

    Google Scholar 

  123. P.M. Rousseau, P.B. Griffin, J.D. Plummer (1998) Arsenic deactivation enhanced diffusion: a time, temperature and concentration study. J. Appl. Phys. 84:3593.

    Google Scholar 

  124. C.T. Sah (1988) Evolution of the MOS transistor — from conception to VLSI. Proc. IEEE 76:1280–1326.

    Google Scholar 

  125. N.C. Seeman (1998) DNA Nanotechnology: novel DNA constructions. Annu. Rev. Bioph. Biom. 27:225–248.

    Google Scholar 

  126. N.C. Seeman (2004) Nanotechnology and the double helix. Sci. American 290:64–75.

    Google Scholar 

  127. W. Shockley (1949) The theory of pn junctions in semiconductors and pn junction transistors. Bell Syst. Tech. J. 28:436–489.

    Google Scholar 

  128. A.M. Song, A. Lorke, A. Kriele, J.P. Kotthaus, W. Wegscheider, M. Bichler (1997) Nonlinear electron transport in an asymmetric microjunction: a ballistic rectifier. Phys. Rev. Lett. 80:3831.

    Google Scholar 

  129. S.M. Sze (1969) Physics of Semiconductor Devices. Wiley, New York.

    Google Scholar 

  130. S.M. Sze (1981) Physics of Semiconductor Devices. 2nd edition. Wiley, New York.

    Google Scholar 

  131. M. Terrones, F. Banhart, F. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89:075505.

    Google Scholar 

  132. S. Tiwari, J.A. Wahl, H. Silva, F. Rana, J.J. Welser (2000) Small silicon memories: confinement, single-electron, and interface state considerations. Appl. Phys. A 71:403–414.

    Google Scholar 

  133. A. Troisi, M.A. Ratner (2004) Conformational molecular rectifiers. Nano Lett. 4:591–595.

    Google Scholar 

  134. F.A. Trumbore (1960) Solid solubilities of impurity elements in germanium and silicon. Bell Syst. Tech. J. 39:205.

    Google Scholar 

  135. M. Tzolov, B. Chang, A. Yin, D. Straus, J.M. Xu, G. Brown (2004) Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array. Phys. Rev. Lett. 92:75505.

    Google Scholar 

  136. J. von Neumann (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, IL.

    Google Scholar 

  137. Y. Wada (2001) Prospects for single molecule information processing devices. Proc. IEEE 89:1147–1171.

    Google Scholar 

  138. Y. Wada, T. Uda, M.I. Lutwyche, S. Kondo, S. Heike S (1993) A proposal of nanoscale devices based on atom/molecule switching. J. Appl. Phys. 74:7321.

    Google Scholar 

  139. D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4:871–875.

    Google Scholar 

  140. C. Weisbuch (1996) The future of physics of heterostructures: a glance into the crystal (quantum) ball. Phys. Scripta T68:102–112.

    Google Scholar 

  141. R.A. Wolkow (2000) Controlled molecular adsorption on Si: laying a foundation for molecular devices. Annu. Rev. Phys. Chem. 50:413–441.

    Google Scholar 

  142. M.T. Woodside, P.L. McEuen (2002) Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296:1098–1101.

    Google Scholar 

  143. L. Worschech, S. Reitzenstein, P. Hartmann, S. Kaiser, M. Kamp, A. Forchel (2003) Self-switching of branched multiterminal junctions: a ballistic half-adder. Appl. Phy. Lett. 83:2462.

    Google Scholar 

  144. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430:61–65.

    Google Scholar 

  145. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4:433–436.

    Google Scholar 

  146. F.Q. Xie, L. Nittler, Ch. Obermair, Th. Schimmel (2004) Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93:128303.

    Google Scholar 

  147. B. Xu, X. Xiao, X. Yang, L. Zang, N.J. Tao (2005) Measurement and control of single molecule conductance. J. Am. Chem. Soc. 127:2386.

    Google Scholar 

  148. J. Xu (2003) Nanotube electronics: non CMOS routes. Proc. IEEE 91:1819–1829.

    Google Scholar 

  149. Y. Xue (2005) To be published.

    Google Scholar 

  150. Y. Xue, M.A. Ratner (2004) Scaling analysis of Schottky barrier at metal-embedded semiconducting carbon nanotube interfaces. Phys. Rev. B 69:161402.

    Google Scholar 

  151. Y. Xue, M.A. Ratner (2003) Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles. Phys. Rev. B 68:235410.

    Google Scholar 

  152. Y. Xue, M.A. Ratner (2005) Theoretical principles of single-molecule electronics: a chemical and mesoscopic view. Int. J. Quantum Chem. 102:911–924.

    Google Scholar 

  153. P. Yang (2005) Chemistry and physics of semiconductor nanowires. MRS Bulletin 30:85–91.

    Google Scholar 

  154. Z. Yao, C.L. Kane, C. Dekker (2000) High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84:2941.

    Google Scholar 

  155. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, C. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A.M. Rawlett, D.W. Price, J.M. Tour (2003) Fabrication approach for molecule memory arrays. Appl. Phys. Lett. 82:645.

    Google Scholar 

  156. S. Luryi, A. Zaslavsky (2004) Blue sky for SOI: New opportunities for quantum and hot-electron devices. Solid-St. Electron. 48:877–885.

    Google Scholar 

  157. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber (2003) Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302:1377–1379.

    Google Scholar 

  158. Molecular Electronics Special Feature, Proc. Natl. Acad. Sci. USA, Vol. 102, No. 26, 2005.

    Google Scholar 

  159. 2004 International Technology Roadmap for Semiconductors. http://public.itrs.net

    Google Scholar 

  160. Semiconductor Research Corporation (2003) Research Needs for Novel Devices. Novel Device Task Force Report, Research Triangle Park, NC 27709.

    Google Scholar 

  161. Semiconductor Research Corporation (2004) Silicon Nanoelectronics and Beyond: Challenges and Research Directions. Draft, Version 1.1, Research Triangle Park, NC 27709.

    Google Scholar 

  162. Special Issue on Limits of Semiconductor Technology, Proc. IEEE, Vol. 89, No. 3, 2001.

    Google Scholar 

  163. Special Issue on Advances in Carbon Nanotubes, MRS Bulletin, Vol. 29, No. 4, 2004.

    Google Scholar 

  164. Special Issue on Scaling CMOS to the Limit, IBM J. Res. Dev., Vol. 46, No. 2/3, 2002.

    Google Scholar 

  165. Special Issue on Nanoelectronics and Nanoscale Processing, Proc. IEEE, Vol. 91, No. 11, 2003.

    Google Scholar 

  166. http://www.nano.gov/html/facts/whatIsNano.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xue, Y., Ratner, M.A. (2006). Molecular Electronics: from Physics to Computing. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics