Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 705))

Abstract

The fibre bundle model is one of the most important theoretical approaches to investigate the fracture and breakdown of disordered media extensively used both by the engineering and physics community. We present the basic construction of the model and provide a brief overview of recent results focusing mainly on the physics literature. We discuss the limitations of the model to describe the failure of composite materials and present recent extensions of the model which overcome these problems making the model more realistic: we gradually enhance the fibre bundle model by generalizing the failure law, constitutive behavior, deformation state and way of interaction of fibres. We show that beyond the understanding of the fracture of fibre reinforced composites, these extensions of the fibre bundle model also address interesting problems for the statistical physics of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.P. Allen and D.J. Tildesley, Editors, Computer Simulation of Liquids, Oxford University Press, Oxford (1984).

    Google Scholar 

  2. J.V. Andersen, D. Sornette, and K. Leung, Tricritical Behaviour in Rupture Induced by Disorder, Phys. Rev. Lett., 78 2140–2143 (1997).

    Article  Google Scholar 

  3. G.G. Batrouni and A. Hansen, Fracture in three-dimensional fuse networks, Phys. Rev. Lett., 80 325 (1998).

    Article  Google Scholar 

  4. G.G. Batrouni, A. Hansen, and J. Schmittbuhl, Heterogeneous interfacial failure between two elastic blocks, Phys. Rev. E, 65 036126 (2002).

    Article  Google Scholar 

  5. P. Bhattacharyya, S. Pradhan, and B.K. Chakrabarti, Phase transition in fibre bundle models with recursive dynamics, Phys. Rev. E, 67 (14) 046122 (2003).

    Article  Google Scholar 

  6. B.K. Chakrabarti and L.G. Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems , Oxford University Press, Oxford (1997).

    Google Scholar 

  7. B.D. Coleman, Time dependence of mechanical breakdown phenomena, J. Appl. Phys., 27 862 (1956).

    Article  Google Scholar 

  8. W.A. Curtin, The “tough” to brittle transition in brittle matrix composites, J. Mech. Phys. Solids, 41 217 (1993).

    Article  Google Scholar 

  9. W.A. Curtin, Size Scaling of Strength in Heterogeneous Materials, Phys. Rev. Lett., 80 1445–1448 (1998).

    Article  Google Scholar 

  10. D.-H. Kim, B.J. Kim, and H. Jeong, Universality class of the fibre bundle model on complex networks, Phys. Rev. Lett., 94 025501 (2005).

    Article  Google Scholar 

  11. Ravá da Silveira, An introduction to breakdown phenomena in disordered systems, Am. J. Phys., 67 1177 (1999).

    Article  Google Scholar 

  12. H.E. Daniels, The statistical theory of the strength of bundles of threads-I, Proc. R. Soc. London A, 183 405–435 (1945).

    Article  Google Scholar 

  13. A. Delaplace, S. Roux, and G. Pijaudier-Cabot, Damage cascade in a softening interface, Int. J. Solids Struct., 36 1403–1426 (1999).

    Article  Google Scholar 

  14. A. Delaplace, S. Roux, and G. Pijaudier-Cabot, Avalanche Statistics of Interface Crack Propagation in Fibre Bundle Model: Characterization of Cohesive Crack, J. Eng. Mech., 127 646–652 (2001).

    Article  Google Scholar 

  15. G. Dill-Langer, R.C. Hidalgo, F. Kun, Y. Moreno, S. Aicher, and H.J. Herrmann, Size dependency of tension strength in natural fibre composites, Physica A, 325 547–560 (2003).

    Article  Google Scholar 

  16. A.G. Evans and F.W. Zok, The physics and mechanics of fibre-reinforced brittle matrix composites, Journal of Materials Science, 29 3857–3896 (1994).

    Article  Google Scholar 

  17. J.B. Gómez, D. Iñiguez, and A.F. Pacheco, Solvable Fracture Model with Local Load Transfer, Phys. Rev. Lett., 71 380 (1993).

    Article  Google Scholar 

  18. A. Hansen and P.C. Hemmer, Burst Avalanches in Bundles of Fibres: Local Versus Global Load-Sharing, Phys. Lett. A, 184 394–396 (1994).

    Article  Google Scholar 

  19. A. Hansen and S. Roux, Statistical toolbox for damage and fracture. In D. Krajcinovic and J. van Mier, Editors, Damage and Fracture of Disordered Materials, number 410 in CISM Courses and Lectures, Chap. 2, pp. 17–101. Springer Verlag (2000).

    Google Scholar 

  20. D.G. Harlow and S.L. Phoenix, The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials i: Analysis and Conjectures, J. Composite Materials, 12 195 (1978).

    Google Scholar 

  21. D.G. Harlow and S.L. Phoenix, The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials ii: A Numerical Study of Convergence, J. Composite Materials, 12 314 (1978).

    Google Scholar 

  22. P.C. Hemmer and A. Hansen, The Distribution of Simultaneous Fibre Failures in Fibre Bundles, J. Appl. Mech., 59 909–914 (1992).

    Google Scholar 

  23. H.J. Herrmann and S. Roux, Editors, Statistical models for the fracture of disordered media, Random materials and processes, Elsevier, Amsterdam (1990).

    Google Scholar 

  24. R.C. Hidalgo, F. Kun, and H.J. Herrmann, Bursts in a fibre bundle model with continuous damage, Phys. Rev. E, 64 (6) 066122 (2001).

    Article  Google Scholar 

  25. R.C. Hidalgo, F. Kun, and H.J. Herrmann, Creep rupture of viscoelastic fibre bundles, Phys. Rev. E, 65 032502 (2002).

    Article  Google Scholar 

  26. R.C. Hidalgo, Y. Moreno, F. Kun, and H. J. Herrmann, Fracture model with variable range of interaction, Phys. Rev. E, 65 046148 (2002).

    Article  Google Scholar 

  27. B.J. Kim, Phase transitions in the modified fibre bundle model, Europhys. Letts., 66 819 (2004).

    Article  Google Scholar 

  28. M. Kloster, A. Hansen, and P.C. Hemmer, Burst avalanches in solvable models of .brous materials, Phys. Rev. E, 56 2615–2625 (1997).

    Article  Google Scholar 

  29. J. Knudsen and A.R. Massih, Breakdown of disordered media by surface loads, Phys. Rev. E, 72 036129 (2005).

    Article  Google Scholar 

  30. F. Kun and H.J. Herrmann, Damage development under gradual loading of composites, Journal of Materials Science, 35 4685 (2000).

    Article  Google Scholar 

  31. F. Kun, R.C. Hidalgo, H.J. Herrmann, and K.F. Pal, Scaling laws of creep rupture of fibre bundles, Phys. Rev. E, 67 (6) 061802 (2003).

    Article  Google Scholar 

  32. F. Kun, Y. Moreno, R.C. Hidalgo, and H.J. Herrmann, Creep rupture has two universality classes, Europhys. Lett., 63 (3) 347–353 (2003).

    Article  Google Scholar 

  33. F. Kun, S. Zapperi, and H. J. Herrmann, Damage in fibre bundle models, Eur. Phys. J. B, 17 269 (2000).

    Article  Google Scholar 

  34. L. Moral, J.B. Gomez, and Y. Moreno, Exact numerical solution for a timedependent fibre-bundle model with continuous damage, J. Phys. A-Math. Gen., 34 9983 (2001).

    Article  Google Scholar 

  35. L. Moral, Y. Moreno, J.B. Gomez, and A.F. Pacheco, Time dependence of breakdown in a global bre-bundle model with continuous damage, Phys. Rev. E, 63 066106 (2001).

    Article  Google Scholar 

  36. Y. Moreno, J.B. Gómez, and A.F. Pacheco, Self-organized criticality in a fibrebundle- type model, Physica A, 274 400 (1999).

    Article  Google Scholar 

  37. Y. Moreno, J.B. Gomez, and A.F. Pacheco, Fracture and second-order phase transitions, Phys. Rev. Lett., 85 (14) 2865–2868 (2000).

    Article  Google Scholar 

  38. Y. Moreno, J.B. Gomez, and A.F. Pacheco, Instability of scale-free networks under node-breaking avalanches, Eur. Phys. Lett., 58 630 (2002).

    Article  Google Scholar 

  39. H. Nechad, A. Helmstetter, R. El Guerjouma, and D. Sornette, Andrade and critical time to failure laws in fibre-matrix composites: Experiments and model, J. Mech. Phys. Solids, 53 1099 (2005).

    Article  Google Scholar 

  40. H. Nechad, A. Helmstetter, R. El Guerjouma, and D. Sornette, Creep ruptures in heterogeneous materials, Phys. Rev. Lett., 94 045501 (2005).

    Article  Google Scholar 

  41. W.I. Newman and A.M. Gabrielov, Failure of hierarchical distributions of fibre bundles, International Journal of Fracture, 50 1–14 (1991).

    Google Scholar 

  42. W.I. Newman, D.L. Turcotte, and A.M. Gabrielov, log-periodic behavior of a hierarchical failure model with applications to precursory seismic activation, Phys. Rev. E, 52 4827 (1995).

    Article  Google Scholar 

  43. P.K. Nukala and S. Simunovic, A continuous damage random thresholds model for simulating the fracture behavior of nacre, Biomaterials, 26 6087 (2005).

    Article  Google Scholar 

  44. P.K. Nukala and S.Simunovic, Statistical physics models for nacre fracture simulation, Phys. Rev. E, 72 041919 (2005).

    Article  Google Scholar 

  45. P.V.V. Nukala, S. Simunovic, and S. Zapperi, Percolation and localization in the random fuse model, J. Stat. Mech: Theor. Exp., p. P08001 (2004).

    Google Scholar 

  46. F.T. Peires, Tensile tests for cotton yarns. v.-‘the weakest link’, theorems on the strength of long composite specimens, J. Textile Inst., 17 T355–368 (1926).

    Google Scholar 

  47. S.L. Phoenix and I.J. Beyerlein, Statistical Strength Theory for Fibrous Composite Materials, volume 1 of Comprehensive Composite Materials, Sect. 1.19, pages 1–81. Pergamon, Elsevier Science, N. Y. (2000).

    Google Scholar 

  48. S.L. Phoenix, M. Ibnabdeljalil, and C.-Y. Hui, Int. J. Solids Structures, 34 545 (1997).

    Article  Google Scholar 

  49. S.L. Phoenix and I.J. Beyerlein, Statistical Strength Theory for Fibrous Composite Materials, In A. Kelly and C. Zweben, Editors, Comprehensive Composite Materials, Vol. 1, Sect. 1.19. Pergamon, Elsevier Science, New York (2000).

    Google Scholar 

  50. S.L. Phoenix and R. Raj, Scalings in fracture probabilities for a brittle matrix fibre composite, Acta metall. mater., 40 2813 (1992).

    Article  Google Scholar 

  51. S. Pradhan and B.K. Chakrabarti, Precursors of catastrophe in the Bak-Tang- Wiesenfeld, Manna, and random-fibre-bundle models of failure, Phys. Rev. E, 65 016113 (2002).

    Article  Google Scholar 

  52. S. Pradhan and B.K. Chakrabarti, Failure due to fatigue in fibre bundles and solids, Phys. Rev. E, 67 (14) 046124 (2003).

    Article  Google Scholar 

  53. S. Pradhan and B. K. Chakrabarti, Failure properties of fibre bundle models, Int. J. Mod. Phys. B, 17 5565–5581 (2003).

    Article  Google Scholar 

  54. S. Pradhan, A. Hansen, and P.C. Hemmer, Crossover behavior in burst avalanches: Signature of imminent failure, Phys. Rev. Lett., 95 125501 (2005).

    Article  Google Scholar 

  55. S. Pradhan, A. Hansen, and P.C. Hemmer, Crossover behavior in burst avalanches: Signature of imminent failure, Phys. Rev. Lett., 95 125501 (2005).

    Article  Google Scholar 

  56. S. Pradhan and A. Hansen, Failure properties of loaded fibre bundles having a lower cutoff in fibre threshold distribution, Phys. Rev. E, 72 026111 (2005).

    Article  Google Scholar 

  57. S.R. Pride and R. Toussaint, Thermodynamics of fibre bundles, Physica A, 312 159–171 (2002).

    Article  Google Scholar 

  58. F. Raischel, F. Kun, and H.J. Herrmann, Simple beam model for the shear failure of interfaces, Phys. Rev. E, 72 046126 (2005).

    Article  Google Scholar 

  59. S. Roux, Thermally activated breakdown in the fibre-bundle model, Phys. Rev. E, 62 6164 (2000).

    Article  Google Scholar 

  60. S. Roux, A. Delaplace, and G. Pijaudier-Cabot, Damage at heterogeneous interfaces, Physica A, 270 35–41 (1999).

    Article  Google Scholar 

  61. R. Scorretti, S. Cilibreto, and A Guarino, Disorder enhances the effect of thermal of thermal noise in the fibre bundle model, Europhys. Lett., 55 626–632 (2001).

    Article  Google Scholar 

  62. D. Sornette, Elasticity and failure of a set of elements loaded in parallel, J. Phys. A, 22 L243–L250 (1989).

    Article  Google Scholar 

  63. D. Sornette, Mean-field solution of a block-spring model of earthquakes, J. Phys. I. France, 2 2089 (1992).

    Article  Google Scholar 

  64. D. Sornette. Statistical physics of rupture in heterogeneous media. In S. Yip, editor, Handbook of Materials Modeling, Sect. 4.4. Springer Science and Business Media (2005).

    Google Scholar 

  65. D. Sornette and J.V. Andersen, Scaling with respect to disorder in time-to failure, Eur. Phys. J. B, 1 353 (1998).

    Article  Google Scholar 

  66. R. Toussaint and S.R. Pride, Interacting damage models mapped onto Ising and percolation models, Phys. Rev. E, 71 046127 (2005).

    Article  Google Scholar 

  67. D.L. Turcotte and M.T. Glasscoe, A damage model for the continuum rheology of the upper continental crust, Tectonophysics, 383 71–80 (2004).

    Article  Google Scholar 

  68. E. Vives and A. Planes, Avalanches in a fluctuationless first-order phase transition in a random-bond ising model, Phys. Rev. B, 50 3839 (1994).

    Article  Google Scholar 

  69. S. Zapperi, P. Ray, H.E. Stanley, and A. Vespignani, First-Order Transition in the Breakdown of Disordered Media, Phys. Rev. Lett., 78 1408 (1997).

    Article  Google Scholar 

  70. S. Zapperi, P. Ray, H.E. Stanley, and A. Vespignani, Analysis of damage clusters in fracture processes, Physica A, 270 57 (1999).

    Article  Google Scholar 

  71. S. Zapperi, P. Ray, H.E. Stanley, and A. Vespignani, Avalanches in breakdown and fracture processes, Phys. Rev. E, 59 5049 (1999).

    Article  Google Scholar 

  72. S. Zapperi, A. Vespignani, and H.E. Stanley, Plasticity and avalanche behaviour in microfracturing phenomena, Nature, 388 658 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kun, F., Raischel, F., Hidalgo, R., Herrmann, H. (2006). Extensions of Fibre Bundle Models. In: Bhattacharyya, P., Chakrabarti, B.K. (eds) Modelling Critical and Catastrophic Phenomena in Geoscience. Lecture Notes in Physics, vol 705. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35375-5_3

Download citation

Publish with us

Policies and ethics