Skip to main content

Semantic Characterisations of Second-Order Computability over the Real Numbers

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2142))

Included in the following conference series:

Abstract

We propose semantic characterisations of second-order computability over the reals based on σ-definability theory. Notions of computability for operators and real-valued functionals defined on the class of continuous functions are introduced via domain theory. We consider the reals with and without equality and prove theorems which connect computable operators and real-valued functionals with validity of finite σ-formulas.

This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01-00810) and by the Siberian Division of RAS (a grant for young researchers, 2000)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky, A. Jung, Domain theory, Handbook of Logic in Computer Science, v. 3, Clarendon Press, 1994.

    Google Scholar 

  2. J. Blanck, Domain representability of metric space, Annals of Pure and Applied Logic, 83, 1997, pages 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Barwise, Admissible sets and structures, Berlin, Springer-Verlag, 1975.

    MATH  Google Scholar 

  4. A. Brown, C. Pearcy, Introduction to Analysis, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  5. L. Blum and M. Shub and S. Smale, On a theory of computation and complexity over the reals: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc., (N.S.), v. 21, no. 1, 1989, pages 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. E. Gordon, Comparisons between some generalizations of recursion theory, Composition Mathematica, v. 22, N 3, 1970, pages 333–346.

    MATH  Google Scholar 

  7. A. Edalat, Domain Theory and integration, Theoretical Computer Science, 151, 1995, pages 163–193.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Edalat, P. Sünderhauf, A domain-theoretic approach to computability on the real line, Theoretical Computer Science, 210, 1998, pages 73–98.

    Article  Google Scholar 

  9. Yu. L. Ershov, Computable functionals of finite types, Algebra and Logic, 11(4), 1996 pages 367–437.

    Google Scholar 

  10. Yu. L. Ershov, Definability and computability, Plenum, New York, 1996.

    Google Scholar 

  11. M. H. Escardó, PCF extended with real numbers: a domain-theoretic approach to hair-order exact real number computation, PhD thesis, Imperial College, University of London, London, 1997.

    Google Scholar 

  12. T. Erker, M. H. Escardó, K. Keimel, The way-below relation of function spaces over semantic domain, Topology and its Applications, 89(1–2), pages 61–74, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. H. Escardó, Function-space compactifications of function spaces, To appear in Topology and its Applications, 2000.

    Google Scholar 

  14. H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory, Logic colloquium 1969, C.M.E., Hollang, Amsterdam, 1971, pages 361–390.

    Google Scholar 

  15. H. Friedman and K. Ko, Computational complexity of real functions, Theoret. Comput. Sci., v. 20, 1982, pages 323–352.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, A Compendium Of Continuous Lattices, Springer Verlag, Berlin, 1980.

    MATH  Google Scholar 

  17. A. Grzegorczyk, On the definitions of computable real continuous functions, Fund. Math., N 44, 1957, pages 61–71.

    Google Scholar 

  18. A. Jung, Cartesian Closed Categories of Domains, CWI Tract. Centrum voor Wiskunde en Informatica, Amsterdam v. 66, 1989.

    Google Scholar 

  19. M. Korovina, Generalized computability of real functions, Siberian Advance of Mathematics, v. 2, N 4, 1992, pages 1–18.

    MathSciNet  Google Scholar 

  20. M. Korovina, O. Kudinov, A New Approach to Computability over the Reals, SibAM, v. 8, N 3, 1998, pages 59–73.

    MATH  MathSciNet  Google Scholar 

  21. M. Korovina, O. Kudinov, Characteristic Properties of Majorant-Computability over the Reals, Proc. of CSL’98, LNCS, 1584, 1999, pages 188–204.

    Google Scholar 

  22. M. Korovina, O. Kudinov, Computability via Approximations, Bulletin of Symbolic Logic, v. 5, N 1, 1999

    Google Scholar 

  23. M. Korovina, O. Kudinov, A Logical approach to Specifications of Hybrid Systems, Proc. of PSI’99, LNCS 1755, 2000, pages 10–16.

    Google Scholar 

  24. M. Korovina, O. Kudinov, Formalisation of Computability of Operators and Real-Valued Functionals via Domain Theory, Proceedings of CCA-2000, LNCS, to appear.

    Google Scholar 

  25. R. Montague, Recursion theory as a branch of model theory, Proc. of the third international congr. on Logic, Methodology and the Philos. of Sc., 1967, Amsterdam, 1968, pages 63–86.

    Google Scholar 

  26. Y. N. Moschovakis, Abstract first order computability, Trans. Amer. Math. Soc., v. 138, 1969, pages 427–464.

    Article  MATH  MathSciNet  Google Scholar 

  27. Pietro Di Gianantonio, Real number computation and domain theory, Information and Computation, N 127, 1996, pages 11–25.

    Google Scholar 

  28. M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer-Verlag, 1988.

    Google Scholar 

  29. D. Scott, Outline of a mathematical theory of computation, In 4th Annual Princeton Conference on Information Sciences and Systems, 1970, pages 169–176.

    Google Scholar 

  30. D. Scott, Continuous lattices, Lecture Notes in Mathematics, 274, Toposes, Algebraic geometry and Logic, Springer-Verlag, 1972, pages 97–136.

    Google Scholar 

  31. E. Schechter, Handbook of Analysis and Its Foundations, Academic Pressbook, 1996.

    Google Scholar 

  32. V. Stoltenberg-Hansen and J. V. Tucker, Complete local rings as domains, Journal of Symbolic Logic, 53, 1988, pages 603–624.

    Article  MATH  MathSciNet  Google Scholar 

  33. V. Stoltenberg-Hansen and J. V. Tucker, Effective algebras, Handbook of Logic in computer Science, v. 4, Clarendon Press, 1995, pages 375–526.

    MathSciNet  Google Scholar 

  34. H. Tong, Some characterizations of normal and perfectly normal space, Duke Math. J. N 19, 1952, pages 289–292.

    Google Scholar 

  35. K. Weihrauch, Computability, volume 9 of EATCS Monographs on Theoretical Computer Science, Springer, Berlin, 1987.

    Google Scholar 

  36. K. Weihrauch, A simple introduction to computable analysis, Informatik Berichte 171, FernUniversitat, Hagen, 1995, 2-nd edition.

    Google Scholar 

  37. C. Kreitz, K. Weihrauch, Complexity Theory on Real Numbers and Functions, LNCS, 145, 1983, pages 165–175.

    Google Scholar 

  38. K. Weihrauch, X. Zheng Computability on Continuous, Lower Semi-Continuous and Upper Semi-Continuous real Functions, LNCS, 1276, 1997, pages 166–186.

    Google Scholar 

  39. K. Weihrauch, Computable Analysis. An Introduction, Springer-Verlag, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korovina, M.V., Kudinov, O.V. (2001). Semantic Characterisations of Second-Order Computability over the Real Numbers. In: Fribourg, L. (eds) Computer Science Logic. CSL 2001. Lecture Notes in Computer Science, vol 2142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44802-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44802-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42554-0

  • Online ISBN: 978-3-540-44802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics