Skip to main content

Fractional diffusion Processes: Probability Distributions and Continuous Time Random Walk

  • Chapter
  • First Online:
Processes with Long-Range Correlations

Part of the book series: Lecture Notes in Physics ((LNP,volume 621))

Abstract

A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α ε (0, 2] and skewness θ (|θ| ≤ min {α, 2 - α}), and the first-order time derivative with a Caputo derivative of order β ε (0, 1]. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Barkai, CTRW pathways to the fractional diffusion equation, Chemical Physics (2002), to appear

    Google Scholar 

  2. E. Barkai, R. Metzler, J. Klafter: From continuous-time random walks to the fractional Fokker-Planck equation, Physical Review E 61, 132–138 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Baeumer, M.M. Meerschaert: Stochastic solutions for fractional Cauchy problems, Fractional Calculus and Applied Analysis 4, 481–500 (2001)

    MATH  MathSciNet  Google Scholar 

  4. C. Berg, G. Forst: Potential Theory on Locally Compact Abelian Groups (Springer, Berlin 1975)

    MATH  Google Scholar 

  5. P. Butzer, U. Westphal: ‘Introduction to fractional calculus’. in: Fractional Calculus, Applications in Physics, ed. by R. Hilfer (World Scientific, Singapore 2000) pp. 1–85

    Chapter  Google Scholar 

  6. M. Caputo: Linear models of dissipation whose Q is almost frequency independent, Part II Geophys. J. R. Astr. Soc. 13 529–539 (1967)

    Google Scholar 

  7. M. Caputo, F. Mainardi: Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II) 1, 161–198 (1971)

    Article  Google Scholar 

  8. A. V. Chechkin, V. Yu. Gonchar: A model for persistent Lévy motion, Physica A 277, 312–326 (2000)

    Article  ADS  Google Scholar 

  9. A.V. Chechkin, V. Yu. Gonchar: Linear relaxation processes governed by fractional symmetric kinetic equations, JETP (Journal of Experimental and Theoretical Physics) 91, 635–651 (2000)

    Article  ADS  Google Scholar 

  10. D.R. Cox: Renewal Theory (Methuen, London 1967)

    MATH  Google Scholar 

  11. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Higher Transcendental Functions, Bateman Project, Vols. 1–3 (McGraw-Hill, New York 1953–1955)

    Google Scholar 

  12. W. Feller: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund). Tome suppl. dédié a M. Riesz, Lund (1952) 73–81

    Google Scholar 

  13. W. Feller: An Introduction to Probability Theory and its Applications, Vol. 2 (Wiley, New York 1971)

    MATH  Google Scholar 

  14. B.V. Gnedenko and A.N. Kolmogorov: Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Cambridge, Mass. 1954)

    MATH  Google Scholar 

  15. R. Gorenflo, G. De Fabritiis, F. Mainardi: Discrete random walk models for symmetric Lévy-Feller diffusion processes, Physica A 269, 79–89 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Gorenflo, Yu. Luchko, F. Mainardi: Analytical properties and applications of the Wright function, Fractional Calculus and Applied Analysis 2, 383–414 (1999)

    MATH  MathSciNet  Google Scholar 

  17. R. Gorenflo, F. Mainardi: ‘Fractional calculus: integral and differential equations of fractional order’. In: Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997) pp. 223–276 [Reprinted in NEWS 010101, see http://www.fracalmo.org]

    Google Scholar 

  18. R. Gorenflo, F. Mainardi: Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis 1, 167–191 (1998)

    MATH  MathSciNet  Google Scholar 

  19. R. Gorenflo, F. Mainardi: Approximation of Lévy-Feller diffusion by random walk, Journal for Analysis and its Applications (ZAA) 18, 231–146 (1999)

    MATH  MathSciNet  Google Scholar 

  20. R. Gorenflo, F. Mainardi: ‘Random walk models approximating symmetric spacefractional diffusion processes’. In: J. Elschner, I. Gohberg and B. Silbermann (Editors), Problems in Mathematical Physics, ed. by J. Elschner, I. Gohberg, B. Silbermann (Birkhäuser Verlag, Basel 2001) pp. 120–145 [Series Operator Theory: Advances and Applications, No 121]

    Google Scholar 

  21. R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi: Time-fractional diffusion: a discrete random walk approach, Nonlinear Dynamics (2002), in press

    Google Scholar 

  22. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi: Fractional diffusion: probability distributions and random walk models, Physica A 305, 106–112 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi: Discrete random walk models for space-time fractional diffusion, Chemical Physics (2002), in press

    Google Scholar 

  24. R. Gorenflo and F. Mainardi: ‘Non-Markovian random walk models, scaling and diffusion limits’. In: Mini-Proceedings:e 2-nd MaPhySto Conference on Lévy Processes: Theory and Applications. Dept. Mathematics, University of Aarhus, Denmark, 21–25 January 2002, ed. by O.E. Barndor.-Nielsen (Mathematical Physics and Stochastics Centre, Aarhus 2002) pp. 120–128 [see http://www.maphysto.dk, Publications, Miscellanea No. 22]

  25. R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto: ‘Fractional calculus and continuous-time finance III: the diffusion limit’. In: Mathematical Finance, ed. by M. Kohlmann, S. Tang (Birkhäuser Verlag, Basel 2001) pp. 171–180

    Google Scholar 

  26. R. Gorenflo, F. Mainardi, E. Scalas, A. Vivoli: Continuous-time random walk models for fractional diffusion processes, in preparation.

    Google Scholar 

  27. I.S. Gradshteyn, I.M. Ryzhik: Tables of Integrals, Series and Products (Academic Press, New York 1980)

    Google Scholar 

  28. R. Hilfer: ‘Fractional time evolution’. In: Applications of Fractional Calculus in Physics, ed. by R. Hilfer (World Scientific, Singapore, 2000) pp. 87–130

    Chapter  Google Scholar 

  29. R. Hilfer, L. Anton: Fractional master equations and fractal time random walks, Phys. Rev. E 51, R848–R851 (1995)

    Article  ADS  Google Scholar 

  30. B.D. Hughes: Random Walks and Random Environments, Vol. 1: Random Walks (Clarendon Press, Oxford 1995)

    MATH  Google Scholar 

  31. N. Jacob, Pseudo differential Operators. Markov Processes, Vol. 1: Fourier Analysis and Semigroups (Imperial College Press, London 2001)

    Google Scholar 

  32. A. Janicki, A. Weron: Simulation and Chaotic Behavior of α-Stable Stochastic Processes (Marcel Dekker, New York 1994)

    Google Scholar 

  33. J. Klafter, A. Blumen, M.F. Shlesinger: Stochastic pathway to anomalous diffusion, Phys. Rev. A 35, 3081–3085 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Klafter, M. F. Shlesinger, G. Zumofen: Beyond Brownian motion, Physics Today 49, 33–39 (1996)

    Article  Google Scholar 

  35. M. Kotulski: Asymptotic distributions of continuous-time random walks: a probabilistic approach, J. Stat. Phys. 81, 777–792 (1995)

    Article  MATH  ADS  Google Scholar 

  36. P. Lévy: Théorie de l’Addition des Variables Aléatoires, 2nd edn. (Gauthier-Villars, Paris 1954)

    MATH  Google Scholar 

  37. F. Mainardi: ‘Fractional calculus: some basic problems in continuum and statistical mechanics’. In: Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer Verlag, Wien and New-York 1997) pp. 291–248 [Reprinted in NEWS 011201 http://www.fracalmo.org]

    Google Scholar 

  38. F. Mainardi, Yu. Luchko, G. Pagnini: The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis 4, 153–192 (2001) [Reprinted in NEWS 010401 http://www.fracalmo.org]

    MATH  MathSciNet  Google Scholar 

  39. F. Mainardi, G. Pagnini: Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals, J. Computational and Applied Mathematics (2002), to appear

    Google Scholar 

  40. F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas: Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A 287, 468–481 (2000)

    Article  ADS  Google Scholar 

  41. A.M. Mathai, R.K. Saxena: The H-function with Applications in Statistics and Other Disciplines (New Delhi, Wiley Eastern Ltd 1978)

    MATH  Google Scholar 

  42. R. Metzler, J. Klafter: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Reports 339, 1–77 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. R. Metzler, T.F. Nonnenmacher: Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chemical Physics (2002), in press

    Google Scholar 

  44. K.S. Miller, S.G. Samko: Completely monotonic functions, Integral Transforms and Special Functions 12, 389–402 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. E.W. Montroll, M.F. Shlesinger: ‘On the wonderful world of random walks’. In: Nonequilibrium Phenomena II: from Stochastics to Hydrodynamics, ed. by J. Leibowitz, E.W. Montroll (North-Holland, Amsterdam 1984) pp. 1–121 [Series Studies in Statistical Mechanics, Vol. XI]

    Google Scholar 

  46. E.W. Montroll, G.H. Weiss: Random walks on lattices II, J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  47. E.W. Montroll, B.J. West: ‘On an enriched collection of stochastic processes’. In: Fluctuation Phenomena, ed. by E.W. Montroll, J. Leibowitz (North-Holland, Amsterdam 1979) pp. 61–175 [Series Studies in Statistical Mechanics, Vol. VII]

    Google Scholar 

  48. P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri: The fractional Fick’s law for non-local transport processes, Physica A 293, 130–142 (2001)

    Article  MATH  ADS  Google Scholar 

  49. I. Podlubny: Fractional differential Equations (Academic Press, San Diego 1999)

    MATH  Google Scholar 

  50. M. Riesz: L’intégrales de Riemann-Liouville et le probléme de Cauchy, Acta Math. 81, 1–223 (1949)

    Article  MathSciNet  Google Scholar 

  51. A. Saichev, G. Zaslavsky: Fractional kinetic equations: solutions and applications, Chaos 7, 753–764 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. S.G. Samko, A.A. Kilbas, O.I. Marichev: Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, New York 1993)

    MATH  Google Scholar 

  53. G. Samorodnitsky, M.S. Taqqu: Stable non-Gaussian Random Processes (Chapman & Hall, New York 1994)

    MATH  Google Scholar 

  54. K. Sato: Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, Cambridge 1999)

    MATH  Google Scholar 

  55. E. Scalas, R. Gorenflo, F. Mainardi: Fractional calculus and continuous-time finance, Physica A 284, 376–384 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  56. W.R. Schneider: ‘Stable distributions: Fox function representation and generalization’. In: Stochastic Processes in Classical and Quantum Systems, ed. by S. Albeverio, G. Casati, D. Merlini (Springer Verlag, Berlin-Heidelberg 1986) 497–511 [Lecture Notes in Physics, Vol. 262]

    Chapter  Google Scholar 

  57. W.L. Smith: Renewal theory and its ramifications, J. Roy. Statist. Soc. B 20, 243–284 (1958) [Discussion, pp. 284-302]

    Google Scholar 

  58. H.M. Srivastava, K.C. Gupta, S.P. Goyal: The H-Functions of One and Two Variables with Applications (South Asian Publishers, New Delhi and Madras 1982)

    MATH  Google Scholar 

  59. H. Takayasu: Fractals in the Physical Sciences (Manchester University Press, Manchester and New York 1990)

    MATH  Google Scholar 

  60. V.V. Uchaikin: private communication (2000)

    Google Scholar 

  61. V.V. Uchaikin, V.M. Zolotarev: Chance and Stability. Stable Distributions and their Applications (VSP, Utrecht 1999)

    Google Scholar 

  62. A. Vivoli, Non-Gaussian Stochastic Processes and Their Applications, Thesis for Degree in Physics, University of Bologna, March 2002, in Italian. [Supervisors: Prof. F. Mainardi and Prof. R. Gorenflo]

    Google Scholar 

  63. G.H. Weiss: Aspects and Applications of Random Walks (North-Holland, Amsterdam 1994) s. Rev. E 55, 99–106 (1997)

    Google Scholar 

  64. D.V. Widder: The Laplace Transform (Princeton Univ. Press, Princeton 1946)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorenflo, R., Mainardi, F. (2003). Fractional diffusion Processes: Probability Distributions and Continuous Time Random Walk. In: Rangarajan, G., Ding, M. (eds) Processes with Long-Range Correlations. Lecture Notes in Physics, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44832-2_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44832-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40129-2

  • Online ISBN: 978-3-540-44832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics