Skip to main content

Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications

  • Chapter
  • First Online:
Book cover Dendrimers III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 212))

Abstract

This chapter describes composite materials composed of dendrimers and metals or semiconductors. Three types of dendrimer/metal-ion composites are discussed: dendrimers containing structural metal ions, nonstructural exterior metal ions, and nonstructural interior metal ions. Nonstructural interior metal ions can be reduced to yield dendrimer-encapsulated metal and semiconductor nanoparticles. These materials are the principal focus of this chapter. Poly(amidoamine) (PAMAM) and poly(propylene imine) dendrimers, which are the two commercially available families of dendrimers, are in many cases monodisperse in size. Accordingly, they have a generation-dependent number of interior tertiary amines. These are able to complex a range of metal ions including Cu2+, Pd2+, and Pt2+. The maximum number of metal ions that can be sorbed within the dendrimer interior depends on the metal ion, the dendrimer type, and the dendrimer generation. For example, a generation six PAMAM dendrimer can contain up to 64 Cu2+ ions. Nonstructural interior ions can be chemically reduced to yield dendrimer-encapsulated metal nanoparticles. Because each dendrimer contains a specific number of ions, the resulting metal nanoparticles are in many cases of nearly monodisperse size. Nanoparticles within dendrimers are stabilized by the dendrimer framework; that is, the dendrimer first acts as a molecular template to prepare the metal nanoparticles and then as a stabilizer to prevent agglomeration. These composites are useful for a range of catalytic applications including hydrogenations and Heck chemistry. The unique properties of the interior dendrimer microenvironment can result in formation of products not observed in the absence of the dendrimer. Moreover the exterior dendrimer branches act as a selective gate that controls access to the interior nanoparticle, which results in selective catalysis. In addition to single-metal nanoparticles, it is also possible to prepare bimetallic nanoclusters and dendrimer-encapsulated semiconductor nanoparticles, such as CdS, using this same general approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. Buhleier E, Wehner W, Vögtle F (1978) Synthesis 155

    Google Scholar 

  2. Vögtle F (ed) (1998) Topics in current chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Zeng F, Zimmerman SC (1997) Chem Rev 97:1681

    Article  CAS  Google Scholar 

  4. Matthews OA, Shipway AN, Stoddart JF (1998) Prog Polym Sci 23:1

    Article  CAS  Google Scholar 

  5. Fischer M, Vögtle F (1999) Angew Chem Int Ed 38:884

    Article  Google Scholar 

  6. Venture M, Serroni S, Juris A, Campagna S, Balzani V (1998) Topics Curr Chem 197:193

    Article  Google Scholar 

  7. Technical data from DSM Fine Chemicals (The Netherlands) and Dendritech, Inc (Midland, MI, USA)

    Google Scholar 

  8. Naylor AM, Goddard WA, Kiefer GE, Tomalia DA (1989) J Am Chem Soc 11:2339

    Article  Google Scholar 

  9. De Brabander-van den Berg EMM, Mijenhuis A, Mure M, Keulen J, Reintjens R, Vandenbooren F, Bosman B, de Raat D, Frijins T, van den Wal S, Castelijns M, Put J, Meijer EW (1994) Macromol Symp 77:51

    Google Scholar 

  10. Miedaner A, Curtis CJ, Barkley RM, DuBois DL (1994) Inorg Chem 33:5482

    Article  CAS  Google Scholar 

  11. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM (1995) J Am Chem Soc 117:4417

    Article  CAS  Google Scholar 

  12. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1994) Science 266:1226

    Article  CAS  Google Scholar 

  13. Sayed-Sweet Y, Hedstrand DM, Spinder R, Tomalia DA (1997) J Mater Chem 7:1199

    Article  CAS  Google Scholar 

  14. Schenning APHJ, Elissen-Roman C, Weener J-W, Baars MWPL, van der Gaast SJ, Meijer EW (1998) J Am Chem Soc 120:8199

    Article  CAS  Google Scholar 

  15. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM (1996) Macromol Symp 102: 27

    CAS  Google Scholar 

  16. Caminati G, Turro NJ, Tomalia DA (1990) J Am Chem Soc 112:8515

    Article  CAS  Google Scholar 

  17. Cooper AI, Londono JD, Wignall G, McClain JB, Samulski ET, Lin JS, Dobrynin A, Rubinstein M, Burke ALC, Fréchet JMJ, DeSimone JM (1997) Nature 389:368

    Article  CAS  Google Scholar 

  18. Ottaviani MF, Cossu E, Turro NJ, Tomalia DA (1995) J Am Chem Soc 117:4387

    Article  CAS  Google Scholar 

  19. Chechik V, Zhao M, Crooks RM (1999) J Am Chem Soc 121:4910

    Article  CAS  Google Scholar 

  20. Schmid G (ed) (1994) Clusters and colloids. VCH, Weinheim

    Google Scholar 

  21. Kamat PV (1997) Prog Inorg Chem 44:273

    Article  CAS  Google Scholar 

  22. Acres GJK, Hards GA (1996) Phil Trans R Soc Lond A 354:1671

    Article  CAS  Google Scholar 

  23. Stonehart P (1994) In: Drake JAG (ed) Electrochemistry and clean energy. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  24. Hamnett A (1996) Phil Trans R Soc Lond A 354:1653

    Article  CAS  Google Scholar 

  25. Fonseca ITE (1991) In: Sequeira CAC (ed) Chemistry and energy I. Elsevier, New York

    Google Scholar 

  26. McEvoy AJ, Grätzel M (1991) In: Sequeira CAC (ed) Chemistry and energy I. Elsevier, New York

    Google Scholar 

  27. Tomalia DA, Durst HD (1993) Top Curr Chem 165:193

    Article  CAS  Google Scholar 

  28. Moors R, Vögtle F (1993) Chem Ber-Recl 126:2133

    Article  CAS  Google Scholar 

  29. Nagasaki T, Ukon M, Arimori S, Shinkai S (1992) J Chem Soc Chem Commun 608

    Google Scholar 

  30. Nagasaki T, Kimura O, Ukon M, Arimori S, Hamachi I, Shinkai S (1994) J Chem Soc Perkin Trans 1:75

    Article  Google Scholar 

  31. Slany M, Bardaji M, Casanove M-J, Caminade A-M, Majoral J-P, Chaudret B (1995) J Am Chem Soc 117:9764

    Article  CAS  Google Scholar 

  32. Gebbink RJMK, Bosman AW, Feiters MC, Meijer EW, Nolte RJM (1999) Chem Eur J 5: 65

    Article  CAS  Google Scholar 

  33. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Mag Res Med 31:1

    Article  CAS  Google Scholar 

  34. Li Y, Dubin PL, Spindler R, Tomalia DA (1995) Macromolecules 28:8426

    Article  CAS  Google Scholar 

  35. Jockusch S, Turro NJ, Tomalia DA (1995) Macromolecules 28:7416

    Article  CAS  Google Scholar 

  36. Ottaviani MF, Turro C, Turro NJ, Bossmann SH, Tomalia DA (1996) J Phys Chem 100:13,667

    CAS  Google Scholar 

  37. Laibinis PE, Whitesides GM (1992) J Am Chem Soc 114:9022

    Article  CAS  Google Scholar 

  38. Zamborini FP, Crooks RM (1997) Langmuir 13:122

    Article  CAS  Google Scholar 

  39. Chan KC, Kim T, Schoer JK, Crooks RM (1995) J Am Chem Soc 117:5875

    Article  CAS  Google Scholar 

  40. Kumar A, Whitesides GM (1993) Appl Phys Lett 63:2002

    Article  CAS  Google Scholar 

  41. Crooks RM, Ricco AJ (1998) Acc Chem Res 31:219

    Article  CAS  Google Scholar 

  42. Ricco AJ, Crooks RM, Osbourn GO (1998) Acc Chem Res 31:289

    Article  CAS  Google Scholar 

  43. Thomas RC, Kim T, Crooks RM, Houston JE, Michalske TA (1995) J Am Chem Soc 117:3830

    Article  CAS  Google Scholar 

  44. Bain CD, Whitesides GM (1988) J Am Chem Soc 110:5897

    Article  CAS  Google Scholar 

  45. Finklea HO, Snider DA, Fedyk J, Sabatani E, Gafni Y, Rubinstein I (1993) Langmuir 9: 3660

    Article  CAS  Google Scholar 

  46. Widrig CA, Chung C, Porter MD (1991) J Electroanal Chem 310:335

    Article  CAS  Google Scholar 

  47. Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Langmuir 7:2687

    Article  CAS  Google Scholar 

  48. Weisshaar DE, Walczak MM, Porter MD (1993) Langmuir 9:323

    Article  CAS  Google Scholar 

  49. Tarlov MJ, Newman JG (1992) Langmuir 8:1398

    Article  CAS  Google Scholar 

  50. Scott JR, Baker LS, Everett WR, Wilkins CL, Fritsch I (1997) Anal Chem 69:2636

    Article  CAS  Google Scholar 

  51. Liu Y, Zhao M, Bergbreiter DE, Crooks RM (1997) J Am Chem Soc 119:8720

    Article  CAS  Google Scholar 

  52. Zhao M, Liu Y, Crooks RM, Bergbreiter DE (1999) J Am Chem Soc 121:923

    Article  CAS  Google Scholar 

  53. Frey H, Lach C, Lorenz K (1998) Adv Mater 10:279

    Article  CAS  Google Scholar 

  54. Watanabe S, Regen SL (1994) J Am Chem Soc 116:8855

    Article  CAS  Google Scholar 

  55. Wells M, Crooks RM (1996) J Am Chem Soc 118:3988

    Article  CAS  Google Scholar 

  56. Tokuhisa H, Crooks RM (1997) Langmuir 13:5608

    Article  CAS  Google Scholar 

  57. Tsukruk VV, Rinderspacher F, Bliznyuk VN (1997) Langmuir 13:2171

    Article  CAS  Google Scholar 

  58. Castagnola M, Cassiano L, Lupi A, Messana I, Patamia M, Rabino R, Rossetti DV, Giardina B (1995) J Chromatogr 694:463

    Article  CAS  Google Scholar 

  59. Zhao M, Crooks RM (1999) Adv Mater 11:217

    Article  CAS  Google Scholar 

  60. Newkome GR, Moorefield CN, Vögtle F (1996) Dendritic molecules. VCH, Weinheim

    Google Scholar 

  61. Puddephatt RJ (1998) J Chem Soc Chem Commun 1055

    Google Scholar 

  62. Hearshaw MA, Moss JR (1999) J Chem Soc Chem Commun 1

    Google Scholar 

  63. Constable EC (1997) J Chem Soc Chem Commun 1073

    Google Scholar 

  64. Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Acc Chem Res 31:26

    Article  CAS  Google Scholar 

  65. Rietveld MHP, Grove DM, van Koten G (1997) New J Chem 21x:751

    Google Scholar 

  66. Jin R-H, Aida T, Inoue SJ (1993) J Chem Soc Chem Commun 1260

    Google Scholar 

  67. Jian DL, Aida T (1996) J Chem Soc Chem Commun 13:1523

    Google Scholar 

  68. Enomoto M, Aida T (1999) J Am Chem Soc 121:874

    Article  CAS  Google Scholar 

  69. Dandliker PJ, Diederich F, Gross M, Knobler M, Louati A, Sanford EM (1994) Angew Chem Int Ed Engl 33:1739

    Article  Google Scholar 

  70. Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) J Am Chem Soc 118:5708

    Article  CAS  Google Scholar 

  71. Pollak KW, Leon JW, Fréchet JMJ, Maskus M, Abruña HD (1998) Chem Mater 10:30

    Article  CAS  Google Scholar 

  72. Newkome GR, Guther R, Moorefield CN, Cardullo F, Echegoyen L, Perezcordero E, Luftmann H (1995) Angew Chem Int Ed Engl 34:2023

    Article  CAS  Google Scholar 

  73. Chow HF, Chan IYK, Chan DTW, Kwok RWM (1996) Chem Eur J 2:1085

    Article  CAS  Google Scholar 

  74. Gorman CB, Smith JC, Hager MW, Parkhurst BL, Sierzputowska-Gracz H, Haney CA (1999) J Am Chem Soc 121:9958

    Article  CAS  Google Scholar 

  75. Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638

    Article  CAS  Google Scholar 

  76. Serroni S, Denti G, Campagna S, Juris A, Ciano M, Balzani V (1992) Angew Chem Int Ed 31:1493

    Article  Google Scholar 

  77. Newkome GR, Cardullo F, Constable EC, Moorefield CN, Thompson AMWC (1993) J Chem Soc, Chem Commun 925

    Google Scholar 

  78. Alonso B, Cuadrado I, Morán M, Losada J (1994) J Chem Soc Chem Commun 2575

    Google Scholar 

  79. Takada K, Dïaz DJ, Abruña HD, Cuadrado I, Casado C, Alonso B, Morán M, Losada J (1997) J Am Chem Soc 119:10,763

    Article  CAS  Google Scholar 

  80. Seyferth D, Kugita T, Rheingold AL, Yap GPA (1995) Organometallics 14:5362

    Article  CAS  Google Scholar 

  81. Kriesel JW, König S, Freitas MA, Marshall AG, Leary JA, Tilley TD (1998) J Am Chem Soc 120: 12,207

    Article  CAS  Google Scholar 

  82. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  83. Zhao M, Crooks RM (1999) Angew Chem Int Ed Engl 38:364

    Article  CAS  Google Scholar 

  84. Zhao M, Crooks RM (1999) Chem Mater 11:3379

    Article  CAS  Google Scholar 

  85. Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355

    Article  CAS  Google Scholar 

  86. Ottaviani MF, Ghatlia ND, Bossmann SH, Barton JK, Durr H, Turro NJ (1992) J Am Chem Soc 114:8946

    Article  CAS  Google Scholar 

  87. Ottaviani MF, Bossmann S, Turro NJ, Tomalia DA (1994) J Am Chem Soc 116:661

    Article  CAS  Google Scholar 

  88. Ottaviani MF, Montalti F, Romanelli M, Turro NJ, Tomalia DA (1996) J Phys Chem 100: 11,033

    CAS  Google Scholar 

  89. Ottaviani MF, Montalti F, Turro NJ, Tomalia DA (1997) J Phys Chem B 101:158

    Article  CAS  Google Scholar 

  90. Bosman AW, Schenning APHJ, Janssen RAJ, Meijer EW (1997) Chem Ber/Recueil 130: 725

    Article  CAS  Google Scholar 

  91. Takada K, Storrier GD, Morán M, Abruña HD (1999) Langmuir 15:7333

    Article  CAS  Google Scholar 

  92. Díaz DJ, Storrier GD, Bernhard S, Takada K, Abruña HD (1999) Langmuir 15:7351

    Article  CAS  Google Scholar 

  93. Vassilev K, Fored WT (1999) J Polym Sci A37:2727

    Google Scholar 

  94. Bourque SC, Maltais F, Xiao WJ, Tardiff O, Alper H, Arya P, Manzer LE (1999) J Am Chem Soc 121:3035

    Article  CAS  Google Scholar 

  95. Muto T, Hanabusa, K, Shirai H (1999) Macromolecular Rapid Comm 20:98

    Article  Google Scholar 

  96. Gebbink RJMK, Bosman AW, Feiters MC, Meijer EW, Nolte RJM (1999) Chem Eur J 5:65

    Article  CAS  Google Scholar 

  97. Moreno-Bondi MC, Orellana G, Turro NJ, Tomalia DA (1990) Macromolecules 23:910

    Article  CAS  Google Scholar 

  98. Zhou L, Russel DH, Zhao M, Crooks RM (2000) Anal Chem (submitted)

    Google Scholar 

  99. Wascowicz T, Zhao M, Crooks RM, DeRose VJ (2000) (in preparation)

    Google Scholar 

  100. Yeung LK, Crooks RM (2000) Adv Mater (submitted)

    Google Scholar 

  101. Skoog DA, West DM, Holler FJ (1994) Analytical Chemistry, 6th edn. Harcourt Brace College Publishers, Philadephia

    Google Scholar 

  102. Niu Y, Sun L, Crooks RM (unpublished results)

    Google Scholar 

  103. Chechik V, Crooks RM (2000) J Am Chem Soc 122:1243

    Article  CAS  Google Scholar 

  104. Lewis LN (1993) Chem Rev 93:2693

    Article  CAS  Google Scholar 

  105. Bradley JS (1994) In: Schmid G (ed) Clusters and colloids. VCH, Weinheim

    Google Scholar 

  106. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  CAS  Google Scholar 

  107. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735

    Article  CAS  Google Scholar 

  108. Schmid G (1992) Chem Rev 92:1709

    Article  CAS  Google Scholar 

  109. Aiken JD III, Lin Y, Finke RGA (1996) J Mol Catal A Chem 114:29

    Article  Google Scholar 

  110. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401

    Article  CAS  Google Scholar 

  111. Petit C, Lixon P, Pileni M (1993) 97:12, 974

    Google Scholar 

  112. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  113. Martin CR (1994) Science 266:1961

    Article  CAS  Google Scholar 

  114. Zhang Y, Raman N, Bailey JK, Brinker CJ, Crooks RM (1992) J Phys Chem 96:9098

    Article  CAS  Google Scholar 

  115. Dendritech (1995) Technology Review

    Google Scholar 

  116. Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J (1991) Rapid Comm Mass Spec 5:383

    Article  CAS  Google Scholar 

  117. Bouchonnet S, Hoppilliard Y, Ohanessian G (1995) J Mass Spec 30:172

    Article  CAS  Google Scholar 

  118. Llenes CF, Omalley RM (1992) Rapid Comm Mass Spec 6:564

    Article  CAS  Google Scholar 

  119. Fanizzi F, Intini FP, Maresca L, Natile G (1990) J Chem Soc Dalton Trans 199

    Google Scholar 

  120. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  121. Fong CY, Cohen ML, Zucca RRL, Stokes J, Shen YR (1970) Phys Rev Lett 25:1486

    Article  CAS  Google Scholar 

  122. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Heidelberg New York

    Google Scholar 

  123. Klabunde KJ (1994) Free atoms, clusters, and nanoscale particles. Academic Press, San Diego

    Google Scholar 

  124. Abe H, Charle K-P, Tesche B, Schulze W (1982) Chem Phys 68:137

    Article  CAS  Google Scholar 

  125. Curtis AC, Duff DG, Edwards PP, Jefferson DA, Johnson BFG, Firkland AI, Wallace ASA (1988) Angew Chem Int Ed 27:1530

    Article  Google Scholar 

  126. Lisiecki I, Pileni MP (1993) J Am Chem Soc 115:3887

    Article  CAS  Google Scholar 

  127. The value of 1.8 nm represents an upper limit on the cluster size.The actual particles certainly have a critical dimension of less than 1 nm (based on CPK models), which is below our TEM resolution

    Google Scholar 

  128. Jackson CL, Chanzy HD, Booy FP, Tomalia DA, Amis EJ (1997) Proc Am Chem Soc 77: 222

    CAS  Google Scholar 

  129. Tokuhisa H, Zhao M, Baker LA, Phan VT, Dermody DL, Garcia ME, Peez RF, Crooks RM, Mayer TM (1998) J Am Chem Soc 120:4492

    Article  CAS  Google Scholar 

  130. Gerloch M, Constable EC (1994) Transition metal chemistry: the valence shell in d-block chemistry. VCH, Weinheim

    Google Scholar 

  131. Because the dendrimer-encapsulated nanoparticles are so small, they do not have the properties of bulk metals. Therefore, it is not possible to calculate the reduction potential for the exchange reactions from tabulated literature data

    Google Scholar 

  132. Sullivan BP (1989) Platinum Metals Rev 33:2

    CAS  Google Scholar 

  133. Liu R, Her W, Fedkiw PS (1992) J Electrochem Soc 139:15

    Article  CAS  Google Scholar 

  134. Kiwi J, Gratzel M (1979) J Am Chem Soc 101:7214

    Article  CAS  Google Scholar 

  135. Zagal JH (1992) Coord Chem Rev 119:89

    Article  CAS  Google Scholar 

  136. Bedioui F, Devynck J, Bied-Charreton CJ (1996) Mol Catal A 113:3

    Article  CAS  Google Scholar 

  137. Deronzier A, Moutet J-C (1989) Acc Chem Res 22:249

    Article  CAS  Google Scholar 

  138. Nashner MS, Somerville DM, Lane PD, Adler DL, Shapley JR, Nuzzo RG (1996) J Am Chem Soc 118:12, 964

    Article  Google Scholar 

  139. Hirai H (1979) J Macromol Sci-Chem A13:633

    Article  CAS  Google Scholar 

  140. Toshima N, Takahashi T (1992) Bull Chem Soc Jpn 65:400

    Article  CAS  Google Scholar 

  141. Boutonnet M, Kizling J, Touroude R, Maire G, Stenius P (1986) Appl Catal 20:163

    Article  CAS  Google Scholar 

  142. Tomalia DA (1990) Macromol Symp 101:245

    Google Scholar 

  143. Jiang DL, Aida T (1997) J Macromolecular Sci Pure Appl Chem A34:2047

    Article  CAS  Google Scholar 

  144. Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) J Am Chem Soc 118:5708

    Article  CAS  Google Scholar 

  145. Brunner H (1995) Organomet Chem 500:39

    Article  CAS  Google Scholar 

  146. Tsukruk VV (1998) Adv Mater 10:253

    Article  CAS  Google Scholar 

  147. Zhao M, Tokuhisa H, Crooks RM (1997) Angew Chem Int Ed 36:2596

    Article  CAS  Google Scholar 

  148. Lee J-J, Ford WT, Moore JA, Li Y (1994) Macromolecules 27:4632

    Article  CAS  Google Scholar 

  149. Fréchet JM, Hawker CJ, Wooley KL (1994) JMS-Pure Appl Chem 11:1627

    Article  Google Scholar 

  150. Bard AJ (ed) (1976) Electroanalytical chemistry: a series of advances. Marcel Dekker, New York

    Google Scholar 

  151. Bard AJ (ed) (1967) Electroanalytical chemistry: a series of advances. Marcel Dekker, New York

    Google Scholar 

  152. Herrmann WA, Kohlpaintner CW (1993) Angew Chem Int Ed 32:1524

    Article  Google Scholar 

  153. Joó F, Somsák L, Beck MT (1984) J Mol Catal 24:71

    Article  Google Scholar 

  154. Bergbreiter DE, Liu Y-S (1997) Tetrahedron Lett 38:7843

    Article  CAS  Google Scholar 

  155. Nádasdi L, Joó F, Horváth I, Vígh L (1997) Appl Catal A 162:57

    Article  Google Scholar 

  156. Horvath IT, Rabai J (1994) Science 266:72

    Article  CAS  Google Scholar 

  157. de Wolf E, van Koten G, Deelman B-J (1999) Chem Soc Rev 28:37

    Article  Google Scholar 

  158. Cornils B (1997) Angew Chem Int Ed Engl 36:2057

    Article  CAS  Google Scholar 

  159. Curran DP (1998) Angew Chem Int Ed 37:1174

    Article  Google Scholar 

  160. Hirai H, Chawanya H, Toshima N (1981) Makromol Chem Rapid Commun 2:99

    Article  CAS  Google Scholar 

  161. Selvaraj PC, Mahadevan VJ (1997) Polymer Sci A 35:105

    Article  CAS  Google Scholar 

  162. Beller M, Fischer H, Kuhlein K, Reisinger CP, Herrmann WA (1996) J Organomet Chem 520: 257

    Article  CAS  Google Scholar 

  163. Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) Langmuir 15:7621

    Article  CAS  Google Scholar 

  164. Klingelhofer S, Heitz W, Greiner A, Oestreich S, Forster S, Antonietti M (1997) J Am Chem Soc 119:10,116

    Article  Google Scholar 

  165. Reetz MT, Lohmer G (1996) J Chem Soc Chem Comm 16:1921

    Google Scholar 

  166. Reetz MT, Breinbauer K, Wanninger K (1996) Tetrahedron Lett: 4499

    Google Scholar 

  167. Dhas NA, Gedanken A (1998) J Mat Chem: 445

    Google Scholar 

  168. Moineau J, Pozzi G, Quici S, Sinou D (1999) Tetrahedron Lett: 7683

    Google Scholar 

  169. Kling R, Sinou D, Pozzi G, Choplin A, Quignard F, Busch S, Kainz S, Koch D, Leitner W (1998) Tetrahedron Lett: 9439

    Google Scholar 

  170. Cabri W, Candani I (1995) Acc Chem Res 28:2

    Article  CAS  Google Scholar 

  171. Kaupp G (1994) Angew Chem Int Ed Engl 33:1452

    Article  Google Scholar 

  172. Morita DK, Pesiri DR, David SA, Glaze WH, Tumas W (1998) Chem Commun 13:1397

    Article  Google Scholar 

  173. Carroll MA, Holmes AB (1998) Chem Commun 13:1395

    Article  Google Scholar 

  174. Bhanage BM, Ikushima Y, Shirai M, Arai M (1999) Tetrahedron Lett 40:6427

    Article  CAS  Google Scholar 

  175. Ji M, Chen XY, Wai CM, Fulton JL (1999) J Am Chem Soc 121:2631

    Article  CAS  Google Scholar 

  176. Heck RF (1979) Acc Chem Res 12:146

    Article  CAS  Google Scholar 

  177. Yeung LK, Lee CT, Johnston KP, Crooks RM (2000) J Am Chem Soc (submitted)

    Google Scholar 

  178. Bonnemann H, Braun GA (1997) Chem Eur J 3:1200

    Article  CAS  Google Scholar 

  179. Bhyrappa P, Vaijayanthimala G, Suslick KS (1999) J Am Chem Soc 121:262

    Article  CAS  Google Scholar 

  180. Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) J Am Soc 118:5708

    Article  CAS  Google Scholar 

  181. Chow HF, Mak CC (1997) J Org Chem 62:5116

    Article  CAS  Google Scholar 

  182. Kamat PV (1993) Chem Rev 93:267

    Article  CAS  Google Scholar 

  183. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013

    Article  CAS  Google Scholar 

  184. Chan WCW, Nie S (1998) Science 281:2016

    Article  CAS  Google Scholar 

  185. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H (1994) J Phys Chem 98:7665

    Article  CAS  Google Scholar 

  186. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463

    Article  CAS  Google Scholar 

  187. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR (1996) Proc Natl Acad Sci USA 93:4897

    Article  CAS  Google Scholar 

  188. Sooklal K, Hanus LH, Ploehn HJ, Murphy CJ (1998) Adv Mater 10:1083

    Article  CAS  Google Scholar 

  189. Lackowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ (1999) J Phys Chem B 103:7613

    Article  CAS  Google Scholar 

  190. Hanus LH, Sooklal K, Murphy CJ, Ploehn HJ (2000) Langmuir 16:2621

    Article  CAS  Google Scholar 

  191. Huang J, Sooklal K, Murphy CJ, Ploehn HJ (1999) Chem Mater 11:3595

    Article  CAS  Google Scholar 

  192. Lemon BI, Crooks RM (unpublished results)

    Google Scholar 

  193. Matsumoto H, Sakata T, Mori H, Yoneyama H (1996) J Phys Chem 100:13781

    Article  CAS  Google Scholar 

  194. Anzai J, Kobayashi Y, Nakamura N, Nishimura M, Hoshi T (1999) Langmuir 15:221

    Article  CAS  Google Scholar 

  195. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW (1999) Bioconjugate Chem 10:103

    Article  CAS  Google Scholar 

  196. Kukowska-Latallo JF, Chen C, Eichman J, Bielinska A, Baker JR (1999) Biochem Biophys Res Commun 264:253

    Article  CAS  Google Scholar 

  197. QIAGEN Inc, 28159 Avenue Stanford, Valencia, CA 91355

    Google Scholar 

  198. Newkome GR, He E, Moorefield CN (1999) Chem Rev 99:1689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crooks, R.M., Lemon, B.I., Sun, L., Yeung, L.K., Zhao, M. (2001). Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications. In: Vögtle, F. (eds) Dendrimers III. Topics in Current Chemistry, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44924-8_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44924-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67828-1

  • Online ISBN: 978-3-540-44924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics