Skip to main content

Solving the Robots Gathering Problem

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2719))

Included in the following conference series:

Abstract

Consider a set of n > 2 simple autonomous mobile robots (decentralized, asynchronous, no common coordinate system, no identities, no central coordination, no direct communication, no memory of the past, deterministic) moving freely in the plane and able to sense the positions of the other robots. We study the primitive task of gathering them at a point not fixed in advance (Gathering Problem). In the literature, most contributions are simulation-validated heuristics. The existing algorithmic contributions for such robots are limited to solutions for n ≤ 4 or for restricted sets of initial configurations of the robots. In this paper, we present the first algorithm that solves the Gathering Problem for any initial configuration of the robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Anderegg, M. Cieliebak, and G. Prencipe. A Linear Time Algorithm to Identify Equiangular and Biangular Point Configurations. Technical Report TR-03-01, Università di Pisa, 2003.

    Google Scholar 

  2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless Point Convergence Algorithm for Mobile Robots with Limited Visibility. IEEE Transaction on Robotics and Automation, 15(5):818–828, 1999.

    Article  Google Scholar 

  3. C. Bajaj. The Algebraic Degree of Geometric Optimization Problems. Discrete and Computational Geometry, 3:177–191, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot Teams. IEEE Transaction on Robotics and Automation, 14(6), 1998.

    Google Scholar 

  5. M. Cieliebak and G. Prencipe. Gathering Autonomous Mobile Robots. In SIROCCO 9, pages 57–72, 2002.

    Google Scholar 

  6. E. J. Cockayne and Z. A. Melzak. Euclidean Constructibility in Graph-minimization Problems. Mathematical Magazine, 42:206–208, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. In ISAAC’ 99, volume 1741 of LNCS, pages 93–102, 1999.

    Google Scholar 

  8. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Autonomous Mobile Robots With Limited Visibility. In STACS 2001, volume 2010 of LNCS, pages 247–258, 2001.

    Chapter  Google Scholar 

  9. D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Cooperation between Autonomous Mobile Robots. In ISER, 1997.

    Google Scholar 

  10. Y. Kupitz and H. Martini. Geometric Aspects of the Generalized Fermat-Torricelli Problem. Intuitive Geometry, 6:55–127, 1997.

    MathSciNet  Google Scholar 

  11. M. J. Matarić. Designing Emergent Behaviors: From Local Interactions to Collective Intelligence. In From Animals to Animats 2: Int. Conf. on Simulation of Adaptive Behavior, pages 423–441, 1993.

    Google Scholar 

  12. G. Prencipe. CORDA: Distributed Coordination of a Set of Autonomous Mobile Robots. In ERSADS 2001, pages 185–190, 2001.

    Google Scholar 

  13. G. Prencipe. Instantaneous Actions vs. Full Asynchronicity: Controlling and Coordinating a Set of Autonomous Mobile Robots. In ICTCS 2001, pages 185–190, 2001.

    Google Scholar 

  14. I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. Siam Journal of Computing, 28(4):1347–1363, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Weiszfeld. Sur le Point Pour Lequel la Somme Des Distances de n Points Donnés Est Minimum. Tohoku Mathematical, 43:355–386, 1936.

    Google Scholar 

  16. E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). In H. Maurer, editor, New Results and New Trends in Computer Science, LNCS, pages 359–370. Springer, 1991.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N. (2003). Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_90

Download citation

  • DOI: https://doi.org/10.1007/3-540-45061-0_90

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40493-4

  • Online ISBN: 978-3-540-45061-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics