Skip to main content

A Geometric Theory of Vague Boundaries Based on Supervaluation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2205))

Abstract

The representation of geographical objects with vague or fuzzy boundaries still poses a challenge to current geographical information systems. The paper presents a geometric account to deal with spatial vagueness. This approach is based on ideas of the theory of supervaluation. To capture vague spatial information current geographical information systems mainly employ fuzzy set theory and fuzzy logic. The proposed geometric theory is contrasted with fuzzy theories regarding the representation of vague spatial objects and the inferences that can be drawn about the objects. Opposed to fuzzy theories, the proposed theory does not rely on a numerical representation to model spatial vagueness, but is still compatible with it. Therefore, the approach is able to support spatial databases in qualitative spatial inferences.

The research reported in this paper was supported by the Deutsche Forschungsgemeinschaft (DFG) in the project ‘Axiomatics of Spatial Concepts’ (Ha 1237-7). I am in particular indebted to Carola Eschenbach, Markus Guhe, Christopher Habel, and Inga Mau for their valuable comments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burrough, P.A. (1996). Natural objects with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 3–28). London: Taylor & Francis.

    Google Scholar 

  • Clementini, E., di Felice, P. (1996). An algebraic model for spatial objects with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 155–169). London: Taylor & Francis.

    Google Scholar 

  • Cohn, A.G. (1997). Qualitative Spatial Representation and Reasoning Techniques. In G. Brewka, C. Habel & B. Nebel (Eds.), KI-97–Advances in Artificial Intelligence (pp. 1–30), Berlin: Springer.

    Google Scholar 

  • Cohn, A.G., Gotts, N.M. (1996a). The ‘egg-yolk’ representation of regions with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 171–187). London: Taylor & Francis.

    Google Scholar 

  • Cohn, A.G., Gotts, N.M. (1996b). Representing Spatial Vagueness: A Mereological Approach. In L.C. Aiello, J. Doyle & S. Shapiro (Eds.), Proceedings of the 5 th conference on principles of knowledge representation and reasoning, KR’ 96 (pp. 230–241). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Couclelis, H. (1996). A typology of geographic entities with ill-defined boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 45–55). London: Taylor & Francis.

    Google Scholar 

  • Egenhofer, M.J., Herring, J. (1991). Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases. Technical report, Department of Surveying Engineering, University of Maine.

    Google Scholar 

  • Elkan, C. (1994). The paradoxical success of fuzzy logic. IEEE Expert, 9(4), 3–8. (Followed by responses and a reply.)

    Article  Google Scholar 

  • Erwig, M., Schneider, M. (1997). Vague Regions. In M. Scholl & A. Voisard (Eds.), 5 th Int. Symp. on Advances in Spatial Databases (pp. 298–320). Berlin: Springer.

    Google Scholar 

  • Eschenbach, Carola, Habel, C., Kulik, L. (1999). Representing simple trajectories as oriented curves. In A.N. Kumar & I. Russell (Eds.), FLAIRS-99, Proceedings of the 12 th International Florida AI Research Society Conference (pp. 431–436). Orlando, Florida.

    Google Scholar 

  • Fine, K. (1975). Vagueness, truth and logic. Synthese, 30, 265–300.

    Article  MATH  Google Scholar 

  • Fisher, P. (2000). Sorites paradox and vague geographies, Fuzzy Sets and Systems, 113(1), 7–18.

    Article  Google Scholar 

  • Hadzilacos, T. (1996). On layer-based systems for undetermined boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 237–255). London: Taylor & Francis.

    Google Scholar 

  • Hájek, P. (1998). Metamathematics of Fuzzy Logic. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Kamp, J.A.W. (1975). Two theories about adjectives. In E.L. Keenan (Ed.), Formal Semantics of Natural Language (pp. 123–155). Cambridge: Cambridge University Press.

    Google Scholar 

  • Keefe, R., Smith, P. (Eds.) (1997). Vagueness: A Reader. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kulik, L., Klippel, A. (1999). Reasoning about cardinal directions using grids as qualitative geographic coordinates. In C. Freksa & D.M. Mark (Eds.), Spatial Information Theory (pp. 205–220). Berlin: Springer.

    Google Scholar 

  • Randell, D.A., Cui, Z., Cohn, A.G. (1992). A spatial logic based on regions and connection. In Proceedings 3 rd International Conference on Knowledge Representation and Reasoning (pp. 165–176). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Schneider, M. (1999). Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In R.H. Güting, D. Papadias, F., Lochovsky (Eds.), 6 th Int. Symp. on Advances in Spatial Databases (pp. 330–351). Berlin: Springer.

    Google Scholar 

  • Sharma, J., Flewelling, D., Egenhofer, M. (1994). A qualitative spatial reasoner. In Sixth International Symposium on Spatial Data Handling (pp. 665–681).

    Google Scholar 

  • Smith, B., Varzi, A. (1997). Fiat and Bona Fide Boundaries: Towards an Ontology of Spatially Extended Objects. In: S.C. Hirtle & A.U. Frank (Eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 103–119). Berlin: Springer.

    Chapter  Google Scholar 

  • Tye, M. (1994). Sorites paradoxes and the semantics of vagueness. In J. Tomberlin (Ed.), Philosophical Perspectives: Logic and Language (pp. 189–206). Atascadero, CA: Ridgeview.

    Google Scholar 

  • Varzi, A. (1997). Boundaries, Continuity, and Contact, Noûs, 31(1), 26–58.

    MathSciNet  Google Scholar 

  • Varzi, A. (2000). Vague Names for Sharp Objects. In L. Obrst & I. Mani (Eds.), Proceedings of the KR Workshop on Semantic Approximation, Granularity, and Vagueness (pp. 73–78), Breckenridge, CO: AAAI Press.

    Google Scholar 

  • Worboys, M.F. (1998). Computation with imprecise geospatial data, Computers, Environment and Urban Systems, 22(2), 85–106.

    Article  Google Scholar 

  • Zadeh, L. (1975). Fuzzy logic and approximate reasoning. Synthese, 30, 407–428.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulik, L. (2001). A Geometric Theory of Vague Boundaries Based on Supervaluation. In: Montello, D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, vol 2205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45424-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45424-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42613-4

  • Online ISBN: 978-3-540-45424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics