Skip to main content

Mathematical and Numerical Techniques in Energy and Environmental Modeling

  • Conference paper
  • First Online:
Numerical Treatment of Multiphase Flows in Porous Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 552))

Abstract

Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies.

Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H. W. and di Benedetto, E., Nonsteady flow of water and oil through inhomogeneous porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 335–392.

    MATH  MathSciNet  Google Scholar 

  2. Antontsev, S. N., Kazhikhov, A. V., and Monakhov, V. N., Boundary-Value Problems in the Mechanics of Nonuniform Fluids, Studies in Mathematics and its Applications, Amsterdam, 1990.

    Google Scholar 

  3. Arbogast, T. J., The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlin. Analysis: Theory, Methods, and Appl. 19 (1992), 1009–1031.

    Article  MATH  MathSciNet  Google Scholar 

  4. Arbogast, T. J. and Chen, Z., On the implementation of mixed methods as nonconforming methods for second order elliptic problems, Math. Comp. 64 (1995), 943–972.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Arbogast, T. J. and Wheeler, M. F., A characteristic-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal. 32 (1995) 404–424.

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrett, J. W. and Morton, K. W., Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comp. Meth. Appl. Mech. and Eng. 45 (1984), 97–122.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bear, J, Dynamics of Fluids in Porous Media, Dover Publications, 1988.

    Google Scholar 

  8. Bramble, J. H., Ewing, R. E., Pasciak, J. E., and Schatz, A. H., A preconditioning technique for the efficient solution of problems with local grid refinement, Comp. Meth. Appl. Mech. and Eng. 67 (1988), 149–159.

    Article  MATH  Google Scholar 

  9. Bramble, J. H. and Pasciak, J., A preconditioning technique for indefinite system resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bramble, J. H., Pasciak, J. E., and Vassilev, A., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997), 1072–1092.

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezzi, F., Douglas, J., Jr., Durán, R., and Fortin, M., Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), 237–250.

    Article  MATH  MathSciNet  Google Scholar 

  12. Brezzi, F., Douglas, J., Jr., Fortin, M., and Marini, L., Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér 21 (1987), 581–604.

    MathSciNet  Google Scholar 

  13. Brezzi, F., Douglas, J., Jr., and Marini, L., Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Methods, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  15. Celia, M. A., Herrera, I., Bouloutas, E., and Kindred, J. S., A new numerical approach for the advection-diffusive transport equation, Numerical Methods for PDEs 5 (1989), 203–226.

    MATH  MathSciNet  Google Scholar 

  16. Celia, M. A., Russell, T. F., Herrera, I., Ewing, R. E., An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources 13 (1990), 187–206.

    Article  Google Scholar 

  17. Chavent, G., A new formulation of diphasic incompressible flows inporous media, in Lecture Notes in Mathematics, Vol. 503, Springer-Verlag, 1976.

    Google Scholar 

  18. Chavent, G. and Jaffre, J., Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  19. Chen, Z., Equivalence between and multigrid algorithms for nonconforming and mixed methods for second order elliptic problems, East-West J. Numer. Math. 4 (1996), 1–33.

    MATH  MathSciNet  Google Scholar 

  20. Chen, Z., Degenerate two-phase incompressible flow I: existence, uniqueness and regularity of a weak solution, J. Diff. Equations, to appear.

    Google Scholar 

  21. Chen, Z., Degenerate two-phase incompressible flow IV: Regularity, stability and stabilization, submitted.

    Google Scholar 

  22. Chen, Z. and Douglas, J., Jr., Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989), 135–148.

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, Z., Espedal, M. S., and Ewing, R. E., Continuous-time finite element analysis of multiphase flow in groundwater hydrology, Applications of Mathematics 40 (1995), 203–226.

    MATH  MathSciNet  Google Scholar 

  24. Chen, Z. and Ewing, R. E., From single-phase to compositional flow: applicability of mixed finite elements, Transport in Porous Media 27 (1997), 225–242.

    Article  MATH  Google Scholar 

  25. Chen, Z. and Ewing, R. E., Comparison of various formulations of three-phase flow in porous media, J. Comp. Physics 132 (1997), 362–373.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Chen, Z. and Ewing, R. E., Fully-discrete finite element analysis of mul-tiphase flow in groundwater hydrology, SIAM J. Numer. Anal. 34 (1997), 2228–2253.

    Article  MATH  MathSciNet  Google Scholar 

  27. Chen, Z. and Ewing, R. E., Local mesh refinement for degenerate two-phase incompressible flow problems, The Proceedings of the Ninth International Colloquium on Differential Equations, D. Bainov, ed., Plovdiv, Bulgaria, 1999, pp. 85–90.

    Google Scholar 

  28. Chen, Z. and Ewing, R. E., Mathematical analysis for reservoir models, SIAM J. Math. Anal. 30 (1999), 431–453.

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, Z. and Ewing, R. E., Degenerate two-phase incompressible flow III: Optimal error estimates, Numer. Math., to appear.

    Google Scholar 

  30. Chen, Z., Ewing, R. E., and Espedal, M. S., Multiphase flow simulation with various boundary conditions, in Computational Methods in Water Resources, A. Peters, G. Wittum, B. Herrling, U. Meissner, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds., Kluwer Academic Publishers, Netherlands, 1994, pp. 925–932.

    Google Scholar 

  31. Chen, Z., Ewing, R. E., Kuznetsov, Y., Lazarov, R., and Maliassov, S., Multilevel preconditioners for mixed methods for second order elliptic problems, Numer. Linear Alg. and Appl. 3 (1996), 427–453.

    Article  MATH  MathSciNet  Google Scholar 

  32. Chen, Z., Ewing, R. E., and Lazarov, R., Domain decomposition algorithms for mixed methods for second order elliptic problems, Math. Comp. 65 (1996), 467–490.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Chen, Z., Qin, G., and Ewing, R. E., Analysis of a compositional model for fluid flow in porous media, SIAM J. Appl. Math., to appear.

    Google Scholar 

  34. Cowsar, L., Mandel, J., and Wheeler, M., Balancing domain decomposition for mixed finite elements, Math. Comp. 64 (1995),989–1015.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Dahle, H. K., Adaptive characteristic operator splitting techniques for convection-dominated diffusion problems in one and two space dimensions, in IMA Volumes in Mathematics and Its Applications, volume II, Springer Verlag, 1988, pp 77–88.

    ADS  MathSciNet  Google Scholar 

  36. Dahle, H. K., Espedal, M. S., and Ewing, R. E., Characteristic Petrov-Galerkin subdomain methods for convection diffusion problems, in IMA Volume 11, Numerical Simulation in Oil Recovery, M.F. Wheeler, ed., Springer-Verlag, Berlin, 1988, pp. 77–88.

    Google Scholar 

  37. Dahle, H. K., Espedal, M. S., Ewing, R. E., and Sævareid, O., Characteristic adaptive sub-domain methods for reservoir flow problems, Numerical Methods for PDEs, 6 (1990), 279–309.

    MATH  Google Scholar 

  38. Dahle, H. K., Ewing, R. E., and Russell, T., Eulerian-Lagrangian localized adjoint methods for a nonlinear advection-diffusion equation, Comput. Meth. Appl. Mech. Eng. 122 (1995), 223–250.

    Article  MATH  MathSciNet  Google Scholar 

  39. Demkowitz, L. and Oden, J. T., An adpative characteristic Petrov-Galerkin finite element method for convection-dominated linear and non-linear parabolic problems in two space variables, Comp. Meth. Appl. Mech. and Eng. 55 (1986), 63–87.

    Article  Google Scholar 

  40. Douglas, J., Jr. and Russell, T., Numerical methods for convection dominated diffusion problems based on combining the modified method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), 871–885.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Douglas, J., Jr., Furtado, F., and Pereira, F., On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs, Computational Geosciences 1 (1997) 155–190.

    Article  MATH  MathSciNet  Google Scholar 

  42. Douglas, J., Jr., Pereira, F., and Yeh, L., A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media, to appear.

    Google Scholar 

  43. Espedal, M. S. and Ewing, R. E., Petrov-Galerkin subdomain methods for two-phase immiscible flow, Comp. Meth. Appl. Mech. and Eng. 64 (1987), 113–135.

    Article  MATH  MathSciNet  Google Scholar 

  44. Espedal, M. S., Ewing, R. E., and Russell, T., Mixed methods, operator splitting, and local refinement techniques for simulation on irregular grids, in Proceedings 2nd European Conference on the Mathematics of Oil Recovery, D. Guerillot and O. Guillon, eds., Editors Technip, Paris, 1990, pp. 237–245.

    Google Scholar 

  45. Espedal, M. S., Ewing, R. E., Russell, T., and Sævareid, O., Reservoir simulation using mixed methods, a modified method of characteristics, and local grid refinement, in Proceedings of Joint IMA/SPE European Conference on the Mathematics of Oil Recovery, Cambridge University, July 25–27, 1989.

    Google Scholar 

  46. Espedal, M. S., Hansen, R., Langlo, P., Sævareid, O., and Ewing, R. E., Heterogeneous porous media and domain decomposition methods, Proceedings 2nd European Conference on the Mathematics of Oil Recovery, D. Guerillot and O. Guillon, eds., Paris, Editors Technip, 1990, pp. 157–163.

    Google Scholar 

  47. Espedal, M. S., Hansen, R., Langlo, P., Sævareid, O., and Ewing, R. E., Efficient adaptaive procedures for fluid flow, Comp. Meth. Appl. Mech. Eng. 55 (1986), 89–103.

    Article  Google Scholar 

  48. Ewing, R. E., Boyett, B. A., Babu, D. K., and Heinemann, R. F., Efficient use of locally refined grids for multiphase reservoir simulation, in Proceedings of Tenth Society of Petroleum Engineers Symposium on Reservoir Simulation, SPE 18413, Houston, Texas, February 6–8 1989, pp. 55–70.

    Google Scholar 

  49. Ewing, R. E. and George, J. H., Identification and control of distributed parameters in porous media flow, Distributed Parameter Systems, F. Kappel, K. Kunisch, and W. Schappacher, eds., Lecture Notes in Control and Information Sciences, volume 75, Springer-Verlag, Berlin, 1985, pp. 145–161.

    Chapter  Google Scholar 

  50. Ewing, R. E., Heinemann, R. T., Koebbe, J. V., and Prasad, U. S., Velocity weighting techniques for fluid displacement, Comp. Meth. Appl. Mech. Eng. 64 (1987), 137–151.

    Article  MATH  Google Scholar 

  51. Ewing, R. E., Lazarov, R. D., and Vassilevski, P. S., Local refinement techniques for elliptic problems on cell-centered girds, II: Optimal order two-grid iterative methods, Numer. Linear Algebra with Appl. 1 (1994), 337–368.

    Article  MATH  MathSciNet  Google Scholar 

  52. Ewing, R. E., Pilant, M. S., Wade, J. G., Watson, A. T., Estimating parameters in scientific computation: A survey of experience from oil and groundwater modeling, IEEE Computational Science & Engineering 1 (1994), 19–31.

    Article  Google Scholar 

  53. Ewing, R. E., Pilant, M. S., Wade, J. G., Watson, A. T., Identification and control problems in petroleum and groundwater modeling, Control Problems in Industry (I. Lasciecka and B. Morton, eds.), Progress in Systems and Control Theory, 21, Birkhauser, Basel, 119–149.

    Google Scholar 

  54. Ewing, R. E., Russell, T. F., and Wheeler, M. F., Simulation of miscible displacement using mixed methods and a modified method of characteristics, in Proceedings Seventh SPE Symposium on Reservoir Simulation, SPE 12241, San Francisco, November 15–18 1983, pp. 71–82.

    Google Scholar 

  55. Ewing, R. E., Russell, T. F., and Wheeler, M. F., Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng. 47 (1984), 73–92.

    Article  MATH  MathSciNet  Google Scholar 

  56. Ewing, R. E., Shen, J., and Vassilevski, P. S., Vectorizable preconditioners for mixed finite element solution of second-order elliptic problems, International Journal of Computer Mathematics 44 (1992), pp. 313–327.

    Article  MATH  Google Scholar 

  57. Ewing, R. E. amd Wang, H., An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems, SIAM J. Numer. Anal. 33 (1996), 318–348.

    Article  MATH  MathSciNet  Google Scholar 

  58. Ewing, R. E. amd Wang, H., An Eulerian-Lagrangian localized adjoint method for variable-coefficient advection-reaction problems, in Advances in Hydro-Science and Engineering, S. Wang, ed., volume 1, Part B, University of Mississippi Press, 1993, pp. 2010–2015.

    Google Scholar 

  59. Ewing, R. E. amd Wang, H., Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis, Computational Mechanics 12 (1993), 97–121.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Ewing, R. E. amd Wang, H., Eulerian-Lagrangian localized adjoint methods for variable coefficient advection-diffusive-reactive equations in groundwater contaminant transport, in Advances in Optimization and Numerical Analysis, S. Goméz and J.P. Hennart, eds., volume 275, Kluwer Academic Publishers, Netherlands, 1994, pp. 185–205.

    Google Scholar 

  61. Ewing, R. E. amd Wang, H., Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater, in Environmental Studies: Mathematical Computational, and Statistical Analysis, IMA Volume in Mathematics and its Application, M.F. Wheeler, ed., volume 79, Springer-Verlag, Berlin, 1995, pp. 149–170.

    Google Scholar 

  62. Ewing, R. E. amd Wang, H., Optimal-order convergence rate for Eulerian-Lagrangian localized adjoint method for reactive transport and contamination in groundwater, Numer. Meth. in PDE’s 11 (1995), 1–31.

    MATH  MathSciNet  Google Scholar 

  63. Ewing, R. E., Wang, H., and Russell, T., Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal. 15 (1995), 405–459.

    Article  MATH  MathSciNet  Google Scholar 

  64. Ewing, R. E. and Wang, J., Analysis of mixed finite element methods on locally refined grids, Numer. Math. 63 (1992), 183–194.

    Article  MATH  MathSciNet  Google Scholar 

  65. Ewing, R. E. and Wang, J., Analysis of multilevel decomposition iterative methods for mixed finite element methods, R.A.I.R.O. 28(4) (1994), pp. 377–398.

    MATH  MathSciNet  Google Scholar 

  66. Feng, X., On existence and uniqueness for a coupled system modeling miscible displacement in porous media, J. Math. Anal. Appl., 194 (1995), 441–469.

    Article  Google Scholar 

  67. Herrera, I., Unified formulation of numerical methods I. Green’s formula for operators in discontinuous fields, Numer. Meth. for PDEs 1 (1985), 25–44.

    MATH  MathSciNet  Google Scholar 

  68. Herrera, I., Ewing, R. E., Celia, M. A., and Russell, T. F., Eulerian-Lagrangian localized adjoint method: The theoretical framework, Numer. Meth. for PDE’s 9 (1993), 431–457.

    MATH  MathSciNet  Google Scholar 

  69. Hittel, D., Fundamentals of Soil Physics, Academic Press, 1980.

    Google Scholar 

  70. Kroener, D. and Luckhaus, S., Flow of oil and water in a porous medium, J. Diff. Equations 55 (1984), 276–288.

    Article  MATH  MathSciNet  Google Scholar 

  71. Kružkov, S. N. and Sukorjanskiî, S. M., Boundary problems for systems of equations of two-phase porous flow type; statement of the problems, questions of solvability, justification of approximate methods, Math. USSR Sbornik 33 (1977), 62–80.

    Article  MATH  Google Scholar 

  72. Langlo, D. and Espedal, M., Heterogeneous reservoir models, two-phase immiscible flow in 2d, in Mathematical Modeling in Water Resources, Computational Methods inWater Resources, T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds., IX, volume 2, Elsevier Applied Science, London, 1992, pp. 71–80.

    Google Scholar 

  73. Lin, T. and Ewing, R. E., Parameter estimation for distributed systems arising in in fluid flow problems via time series methods, in Proceedings of Conference on “Inverse Problems”, Oberwolfach, West Germany, 1986. Birkhauser, Berlin, pp. 117–126.

    Google Scholar 

  74. McCormick, S. and Thomas, J., The fast adaptive composite grid methods for elliptic boundary value problems, Math. Comp. 46 (1986), 439–456.

    Article  MATH  MathSciNet  Google Scholar 

  75. Nedelec, J., Mixed finite elements in ℜ3, Numer. Math. 35 (1980), 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  76. Raviart, R. and Thomas, J., A mixed finite element method for second order elliptic problems, Lecture Notes in Mathematics, vol. 606, Springer, Berlin, 1977, pp. 292–315.

    Google Scholar 

  77. Rusten, T. and Winther, R., A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl. 13 (1992), 887–904.

    Article  MATH  MathSciNet  Google Scholar 

  78. Russell, T., The time-stepping along characteristics with incomplete iteration for Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal. 22 (1985), 970–1013.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. Russell, T., Eulerian-Lagrangian localized adjoint methods for advection-dominated problems, In Proceedings of 13th Biennial Conference on Numerical Analysis, Dundee, Scotland, June 27–30 1989. Pitmann Publishing Company.

    Google Scholar 

  80. van Genuchten, M., A closed form equation for predicting the hydraulic conductivity in soils, Soil Sci. Soc. Am. J. 44 (1980), 892–898.

    Article  Google Scholar 

  81. Wang, H., Ewing, R. E., and Celia, M. A., Eulerian-Lagrangian localized adjoint methods for reactive transport with biodegradation, Numer. Meth. for PDEs 11 (1995), 229–254.

    MATH  MathSciNet  Google Scholar 

  82. Wang, H., Ewing, R. E., and Russell, T. F., Eulerian-Lagrangian localized adjoint methods for variable-coefficient convection-diffusion problems arising in groundwater applications, in Computational Methods inWater Resources, IX, Numerical Methods inWater Resources, volume 1, T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds., Elsevier Applied Science, London,1992, pp. 25–32.

    Google Scholar 

  83. Wang, H., Lin, T., and Ewing, R. E., Eulerian-Lagrangian localized ad-joint methods with domain decomposition and local refinement techniques for advection-reaction problems with discontinuous coefficients, in Computational Methods in Water Resources, IX, Numerical Methods in Water Resources, volume 1, T. F. Russell, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pinder, eds., Elsevier Applied Science, London, 1992, pp. 17–24.

    Google Scholar 

  84. Watson, A. T., Wade, J. G., and Ewing, R. E., Parameter and system identification for fluid flow in underground reservoirs, in Proceedings of the Conference, Inverse Problems and Optimal Design in Industry, Philadelphia, PA, July 8–10 1994.

    Google Scholar 

  85. Whitaker, S., Flow in porous media II: The governing equations for immiscible two-phase flow, Transport in Porous Media 1 (1986), 102–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Ewing, R.E. (2000). Mathematical and Numerical Techniques in Energy and Environmental Modeling. In: Chen, Z., Ewing, R.E., Shi, ZC. (eds) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, vol 552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45467-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45467-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67566-2

  • Online ISBN: 978-3-540-45467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics