Skip to main content

The environmental stress response: a common yeast response to diverse environmental stresses

  • Chapter
  • First Online:
Yeast Stress Responses

Part of the book series: Topics in Current Genetics ((TCG,volume 1))

Abstract

Unicellular organisms require specific internal conditions for optimal growth and function, however sudden changes in the external environment can perturb the internal milieu, disrupting normal processes. Therefore, cells must maintain their internal system despite fluctuations in the external surroundings. One mechanism that yeast cells use to protect the internal system from the effects of environmental variation is to initiate a common gene expression program that generally protects the cell during stressful times. This program, referred to as the environmental stress response, includes ∼900 genes whose expression is stereotypically altered when yeast cells are shifted to stressful environments. The coordinated expression changes of these genes is a common feature of the responses to many different environments, however the regulation of these expression changes is gene-specific and condition-specific, indicating that initiation of the program is precisely controlled in response to each new environment. This review will focus on recent developments in defining and characterizing the genes that participate in the environmental stress response and the regulatory mechanisms that the cell utilizes to orchestrate this program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abeliovich H, Klionsky DJ (2001) Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev 65:43–479

    Article  Google Scholar 

  • Albig AR, Decker CJ (2001) The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 12:3428–3438

    PubMed  CAS  Google Scholar 

  • Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC (2001) Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell 12:53–62

    PubMed  CAS  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  PubMed  CAS  Google Scholar 

  • Amerik AY, Li SJ, Hochstrasser M (2000) Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol Chem 381:981–992

    Article  PubMed  CAS  Google Scholar 

  • Amoros M, Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene-and stress type-dependent manner. Mol Microbiol 39:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Anderson JT, Paddy MR, Swanson MS (1993) PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae. Mol Cell Biol 13:6102–6113

    PubMed  CAS  Google Scholar 

  • Appella E, Arnott D, Sakaguchi K, Wirth PJ (2000) Proteome mapping by two-dimensional polyacrylamide gel electrophoresis in combination with mass spectrometric protein sequence analysis. Exs 88:1–27

    PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Ashe MP, De Long SK, Sachs AB (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848

    PubMed  CAS  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  PubMed  CAS  Google Scholar 

  • Ball CA, Dolinski K, Dwight SS, Harris MA, Issel-Tarver L, Kasarskis A, Scafe CR, Sherlock G, Binkley G, Jin H, Kaloper M, Orr SD, Schroeder M, Weng S, Zhu Y, Botstein D, Cherry JM (2000) Integrating functional genomic information into the Saccharomyces genome database. Nucleic Acids Res 28:77–80

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  PubMed  CAS  Google Scholar 

  • Bertram PG, Zeng C, Thorson J, Shaw AS, Zheng XF (1998) The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. Curr Biol 8:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Blandin G, Durrens P, Tekaia F, Aigle M, Bolotin-Fukuhara M, Bon E, Casaregola S, de Montigny J, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuveglise C, Ozier-Kalogeropoulos O, Perrin A, Potier S, Souciet J, Talla E, Toffano-Nioche C, Wesolowski-Louvel M, Marck C, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487:31–36

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A (1995) Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 MNaCl. JBacteriol 177:3563–3572

    CAS  Google Scholar 

  • Blomberg A, Larsson C, Gustafsson L (1988) Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state. J Bacteriol 170:4562–4568

    PubMed  CAS  Google Scholar 

  • Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33:274–283

    Article  PubMed  CAS  Google Scholar 

  • Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1052

    PubMed  CAS  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  PubMed  CAS  Google Scholar 

  • Broomfield S, Chow BL, Xiao W (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A 95:5678–5683

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microar-rays. Nat Genet 21:33–37

    Article  PubMed  CAS  Google Scholar 

  • Bruning AR, Bauer J, Krems B, Entian KD, Prior BA (1998) Physiological and genetic characterization of osmosensitive mutants of Saccharomyes cerevisiae. Arch Microbiol 170:99–105

    Article  PubMed  CAS  Google Scholar 

  • Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485–503

    PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Carroll AS, Bishop AC, DeRisi JL, Shokat KM, O’Shea EK (2001) Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci U S A 98:12578–12583

    Article  PubMed  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    PubMed  CAS  Google Scholar 

  • Charizanis C, Juhnke H, Krems B, Entian KD (1999) The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet 262:437–447

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Smith KW, Gustin MC (1992) Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol 118:561–571

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  • Dean JL, Wait R, Mahtani KR, Sully G, Clark AR, Saklatvala J (2001) The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 21:721–730

    Article  PubMed  CAS  Google Scholar 

  • Degols G, Shiozaki K, Russell P (1996) Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol 16:2870–2877

    PubMed  CAS  Google Scholar 

  • Delley PA, Hall MN (1999) Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147:163–174

    Article  PubMed  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Alipour H, Adler L, Blomberg A (2000) Rap1p-binding sites in the Saccharomyces cerevisiae GPD1 promoter are involved in its response to NaCl. J Biol Chem 275:29368–29376

    Article  PubMed  CAS  Google Scholar 

  • Estruch F, Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13:3872–3881

    PubMed  CAS  Google Scholar 

  • Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T (2001) Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21:6450–6460

    Article  PubMed  CAS  Google Scholar 

  • Filipits M, Simon MM, Rapatz W, Hamilton B, Ruis H (1993) A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene 132:49–55

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Flattery-O’Brien J, Collinson LP, Dawes IW (1993) Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. J Gen Microbiol 139:501–507

    CAS  Google Scholar 

  • Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556

    Article  PubMed  CAS  Google Scholar 

  • Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  CAS  Google Scholar 

  • Francois J, Villanueva ME, Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur JBiochem 174:551–559

    Article  CAS  Google Scholar 

  • Fuge EK, Braun EL, Werner-Washburne M (1994) Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae. J Bacteriol 176:5802–5813

    PubMed  CAS  Google Scholar 

  • Garcia-Gimeno MA, Struhl K (2000) Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 20:4340–4349

    Article  PubMed  CAS  Google Scholar 

  • Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:2113–2120

    PubMed  CAS  Google Scholar 

  • Garrett S, Broach J (1989) Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 3:1336–1348

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987–3003

    PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha-and gamma-tubulin. EMBO J 17:952–966

    Article  PubMed  CAS  Google Scholar 

  • Gelperin D, Weigle J, Nelson K, Roseboom P, Irie K, Matsumoto K, Lemmon S (1995) 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92:11539–11543

    Article  PubMed  CAS  Google Scholar 

  • Ghavidel A, Schultz MC (2001) TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 106:575–584

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  PubMed  CAS  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MI, Stucka R, Blazquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast 8:183–192

    Article  PubMed  CAS  Google Scholar 

  • Gorner, W., Durchschlag, E., Wolf, J., Brown, E.L., Ammerer, G., Ruis, H., Schuller, C. (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO21(1/2)135–144.

    CAS  Google Scholar 

  • Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    Article  PubMed  CAS  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, Collinson LP, Roe JH, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  PubMed  CAS  Google Scholar 

  • Gray JV, Ogas JP, Kamada Y, Stone M, Levin DE, Herskowitz I (1997) A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Emerman M, Sandmeyer S (1997) Small heat shock protein suppression of Vpr-induced cytoskeletal defects in budding yeast. Mol Cell Biol 17:4033–4042

    PubMed  CAS  Google Scholar 

  • Hardie DG (1999) Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. Biochem Soc Symp 64:13–27

    PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  • Hardy TA, Huang D, Roach PJ (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 269:27907–27913

    PubMed  CAS  Google Scholar 

  • Harrison JC, Bardes ES, Ohya Y, Lew DJ (2001) A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat Cell Biol 3:417–420

    Article  PubMed  CAS  Google Scholar 

  • Hartley AD, Ward MP, Garrett S (1994) The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 136:465–474

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680

    Article  PubMed  CAS  Google Scholar 

  • Hettema EH, Tabak HF (2000) Transport of fatty acids and metabolites across the perox-isomal membrane. Biochim Biophys Acta 1486:18–27

    PubMed  CAS  Google Scholar 

  • Hicke L (1999) Gettin′ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201

    Article  PubMed  CAS  Google Scholar 

  • Ho J, Bretscher A (2001) Ras regulates the polarity of the yeast actin cytoskeleton through the stress response pathway. Mol Biol Cell 12:1541–1555

    PubMed  CAS  Google Scholar 

  • Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI (1999) The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res 27:69–73

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Bedri A, Kessler R, Kretschmer M, Schellenberger W (1989) 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase from Saccharomyces cerevisiae. Adv Enzyme Regul 28:283–306

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, DeVirgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    PubMed  CAS  Google Scholar 

  • Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18:3289–3299

    PubMed  CAS  Google Scholar 

  • Hughes JD, Estep PW, Tavazoie S, Church GM (2000a) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepani-ants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000b) Functional discovery via a compendium of expression profiles. Cell 102:109–126

    Article  PubMed  CAS  Google Scholar 

  • Huie MA, Scott EW, Drazinic CM, Lopez MC, Hornstra IK, Yang TP, Baker HV (1992) Characterization of the DNA-binding activity of Gcr1p: in vivo evidence for two Gcr1p-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 12:2690–2700

    PubMed  CAS  Google Scholar 

  • Hwang PK, Tugendreich S, Fletterick RJ (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 9:1659–1666

    PubMed  CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  PubMed  CAS  Google Scholar 

  • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky SA, Estep P, Church GM, Samson LD (2000) Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20:8157–8167

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky SA, Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96:1486–1491

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Davis C, Broach JR (1998) Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 17:6942–6951

    Article  PubMed  CAS  Google Scholar 

  • Juhnke H, Krems B, Kotter P, Entian KD (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252:456–464

    PubMed  CAS  Google Scholar 

  • Jung US, Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signaling pathway. Mol Microbiol 34:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12:797–805

    Article  PubMed  CAS  Google Scholar 

  • Kagami M, Toh-e A, Matsui Y (1997) SRO9, a multicopy suppressor of the bud growth defect in the Saccharomyces cerevisiae rho3-deficient cells, shows strong genetic interactions with tropomyosin genes, suggesting its role in organization of the actin cytoskeleton. Genetics 147:1003–1016

    PubMed  CAS  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tormediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Kief DR, Warner JR (1981) Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol Cell Biol 1:1007–1015

    PubMed  CAS  Google Scholar 

  • Klein C, Struhl K (1994) Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating Rap1 transcriptional activity. Mol Cell Biol 14:1920–1928

    PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1990) Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87:6550–6554

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248–256

    PubMed  CAS  Google Scholar 

  • Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    Article  PubMed  CAS  Google Scholar 

  • Kressler D, Linder P, de La Cruz J (1999) Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 19:7897–7912

    PubMed  CAS  Google Scholar 

  • Kretschmer M, Schellenberger W, Otto A, Kessler R, Hofmann E (1987) Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast. Biochem J 246:755–759

    PubMed  CAS  Google Scholar 

  • Kuge S, Jones N (1994) Yap1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    PubMed  CAS  Google Scholar 

  • Kuhn KM, DeRisi JL, Brown PO, Sarnow P (2001) Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol 21:916–927

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986) An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB (1999a) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Spector D, Godon C, Labarre J, Toledano MB (1999b) A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274:4537–4544

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Huh WK, Lee BH, Baek YU, Hwang CS, Kim ST, Kim YR, Kang SO (2001a) Mitochondrial NADH-cytochrome b(5) reductase plays a crucial role in the reduction of D-erythroascorbyl free radical in Saccharomyces cerevisiae. Biochim Biophys Acta 1527:31–38

    PubMed  CAS  Google Scholar 

  • Lee S, Pellicioli A, Demeter J, Vaze M, Gasch AP, Malkova A, Brown PO, Stearns T, Foiani M, Haber JE (2001b) Arrest, adaptation and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. In: Cold Spring Harbor Symp. Quant. Biolo, pp 303–314

    Google Scholar 

  • Levin DE, Bartlett-Heubusch E (1992) Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694

    PubMed  CAS  Google Scholar 

  • Li B, Nierras CR, Warner JR (1999) Transcriptional elements involved in the repression of ribosomal protein synthesis. Mol Cell Biol 19:5393–5404

    PubMed  CAS  Google Scholar 

  • Li Y, Moir RD, Sethy-Coraci IK, Warner JR, Willis IM (2000) Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol Cell Biol 20:3843–3851

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap 1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327–334

    Article  PubMed  CAS  Google Scholar 

  • Lillie SH, Brown SS (1994) Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 125:825–842

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A 93:5301–5306

    Article  PubMed  CAS  Google Scholar 

  • Londesborough J, Vuorio OE (1993) Purification of trehalose synthase from baker’s yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur J Biochem 216:841–848

    Article  PubMed  CAS  Google Scholar 

  • Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091

    PubMed  CAS  Google Scholar 

  • Lyons TJ, Gasch AP, Gaither LA, Botstein D, Brown PO, Eide DJ (2000) Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci U S A 97:7957–7962

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11:117–121

    Article  PubMed  CAS  Google Scholar 

  • Manhart A, Holzer H (1988) Substrate specificity of the phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae. Yeast 4:227–232

    Article  PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    PubMed  CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:245–250

    Article  PubMed  CAS  Google Scholar 

  • Matunis MJ, Matunis EL, Dreyfuss G (1993) PUB1: a major yeast poly(A)+ RNA-binding protein. Mol Cell Biol 13:6114–6123

    PubMed  CAS  Google Scholar 

  • Mazon MJ, Gancedo JM, Gancedo C (1982) Phosphorylation and inactivation of yeast fructose-bisphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. Eur J Biochem 127:605–608

    Article  PubMed  CAS  Google Scholar 

  • McAlister L, Finkelstein DB (1980) Alterations in translatable ribonucleic acid after heat shock of Saccharomyces cerevisiae. J Bacteriol 143:603–612

    PubMed  CAS  Google Scholar 

  • McCarthy JE (1998) Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62:1492–1553

    PubMed  CAS  Google Scholar 

  • Millar JB, Buck V, Wilkinson MG (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9:2117–2130

    Article  PubMed  CAS  Google Scholar 

  • Mitchel RE, Morrison DP (1982) Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase. Radiat Res 90:284–291

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Miyakawa T, Mizuta K (2001) Repression of rRNA synthesis due to a secretory defect requires the C-terminal silencing domain of Rap1p in Saccharomyces cerevisiae. Nucleic Acids Res 29:3297–3303

    Article  PubMed  CAS  Google Scholar 

  • Mizuta K, Tsujii R, Warner JR, Nishiyama M (1998) The C-terminal silencing domain of Rap1p is essential for the repression of ribosomal protein genes in response to a defect in the secretory pathway. Nucleic Acids Res 26:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Momose Y, Iwahashi H (2001) Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ Toxicol Chem 20:2353–2360

    Article  PubMed  CAS  Google Scholar 

  • Morse RH (2000) RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet 16:51–53

    Article  PubMed  CAS  Google Scholar 

  • Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  PubMed  CAS  Google Scholar 

  • Muslin AJ, Xing H (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12:703–709

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Neuman-Silberberg FS, Bhattacharya S, Broach JR (1995) Nutrient availability and the RAS/cyclic AMP pathway both induce expression of ribosomal protein genes in Saccharomyces cerevisiae but by different mechanisms. Mol Cell Biol 15:3187–3196

    PubMed  CAS  Google Scholar 

  • Neves MJ, Francois J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288:859–864

    PubMed  CAS  Google Scholar 

  • Nierras CR, Warner JR (1999) Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae. J Biol Chem 274:13235–13241

    Article  PubMed  CAS  Google Scholar 

  • Norbeck J, Blomberg A (1996) Protein expression during exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae. FEMS Microbiol Lett 137:1–8

    Article  PubMed  CAS  Google Scholar 

  • Norbeck J, Blomberg A (1997) Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem 272:5544–5554

    Article  PubMed  CAS  Google Scholar 

  • Norbeck J, Blomberg A (2000) The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16:121–137

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321

    PubMed  CAS  Google Scholar 

  • Oliver SG, McLaughlin CS (1977) The regulation of RNA synthesis in yeast. I: Starvation experiments. Mol Gen Genet 154:145–153

    Article  PubMed  CAS  Google Scholar 

  • Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, Francois J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    Article  PubMed  CAS  Google Scholar 

  • Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900

    PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA 91:5022–5026

    Article  PubMed  CAS  Google Scholar 

  • Perez-Martin J (1999) Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiol Rev 23:503–523

    PubMed  CAS  Google Scholar 

  • Peterson CL, Logie C (2000) Recruitment of chromatin remodeling machines. J Cell Biochem 78:179–185

    Article  PubMed  CAS  Google Scholar 

  • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M (2001) Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 21:5031–5040

    Article  PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    Article  PubMed  CAS  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    PubMed  CAS  Google Scholar 

  • Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Bretscher A (2000) Polarization of cell growth in yeast. J Cell Sci 113:571–585

    PubMed  CAS  Google Scholar 

  • Ramotar D, Masson JY (1996) A Saccharomyces cerevisiae mutant defines a new locus essential for resistance to the antitumour drug bleomycin. Can J Microbiol 42:835–843

    Article  PubMed  CAS  Google Scholar 

  • Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog 1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    PubMed  CAS  Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067–1083

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485

    PubMed  CAS  Google Scholar 

  • Roberts RL, Mosch HU, Fink GR (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Roth D, Birkenfeld J, Betz H (1999) Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett 460:411–416

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (ed) (1997) Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Neupert W, Langer T (1995) Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. EMBO J 14:3434–3444

    PubMed  CAS  Google Scholar 

  • Schmitt M, Neupert W, Langer T (1996) The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J Cell Biol 134:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed  CAS  Google Scholar 

  • Schultz JR, Clarke CF (1999) Characterization of Saccharomyces cerevisiae ubiquinone-deficient mutants. Biofactors 9:121–129

    PubMed  CAS  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes Ubc4 and Ubc5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9:543–550

    PubMed  CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645

    Article  PubMed  CAS  Google Scholar 

  • Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Russell P (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739–743

    Article  PubMed  CAS  Google Scholar 

  • Shulman RW, Sripati CE, Warner JR (1977) Noncoordinated transcription in the absence of protein synthesis in yeast. J Biol Chem 252:1344–1349

    PubMed  CAS  Google Scholar 

  • Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, Young RA (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106:697–708

    Article  PubMed  CAS  Google Scholar 

  • Simon JR, Treger JM, McEntee K (1999) Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae. Mol Microbiol 31:823–832

    Article  PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998a) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998b) Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol 16:460–468

    Article  PubMed  CAS  Google Scholar 

  • Slekar KH, Kosman DJ, Culotta VC (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. JBiol Chem 271:28831–28836

    CAS  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Caputo E, Boeke JD (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 19:3184–3197

    PubMed  CAS  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    Article  PubMed  CAS  Google Scholar 

  • Soballe B, Poole RK (1999) Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    PubMed  CAS  Google Scholar 

  • Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    PubMed  CAS  Google Scholar 

  • Spingola M, Grate L, Haussler D, Ares M, Jr. (1999) Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. Rna 5:221–234

    Article  PubMed  CAS  Google Scholar 

  • Stage-Zimmermann T, Schmidt U, Silver PA (2000) Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell 11:3777–3789

    PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist S (1990) Transcriptional derepression of the Saccharomyces cerevisiae HSP26 gene during heat shock. Mol Cell Biol 10:6362–6373.

    PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist SL (1989) hsp26 of Saccharomyces cerevisiae is related to the super-family of small heat shock proteins but is without a demonstrable function. Mol Cell Biol 9:5265–5271

    PubMed  CAS  Google Scholar 

  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119:301–311

    Article  PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98:5625–5630

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, deWinde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Article  PubMed  CAS  Google Scholar 

  • Thomson TM, Khalid H, Lozano JJ, Sancho E, Arino J (1998) Role of UEV-1A, a homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Lett 423:49–52

    Article  PubMed  CAS  Google Scholar 

  • Traven A, Wong JM, Xu D, Sopta M, Ingles CJ (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276:4020–4027

    Article  PubMed  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  PubMed  CAS  Google Scholar 

  • Treger JM, Schmitt AP, Simon JR, McEntee K (1998) Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273:26875–26879

    Article  PubMed  CAS  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbiol 8:927–943

    Article  PubMed  Google Scholar 

  • Van Den Hazel HB, Kielland-Brandt MC, Winther JR (1996) Review: biosynthesis and function of yeast vacuolar proteases. Yeast 12:1–16

    Article  Google Scholar 

  • van der Klei IJ, Veenhuis M (1997) Yeast peroxisomes: function and biogenesis of a versatile cell organelle. Trends Microbiol 5:502–509

    Article  PubMed  Google Scholar 

  • Vasudevan S, Peltz SW (2001) Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Veinot-Drebot LM, Singer RA, Johnston GC (1989) Heat shock causes transient inhibition of yeast rRNA gene transcription. J Biol Chem 264:19473–19474

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 98:5625–5630

    Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001a) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21:5742–5752

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001b) The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 506:277–280

    Article  PubMed  CAS  Google Scholar 

  • Warner JR (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53:256–271

    PubMed  CAS  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  • Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737–2744

    Article  PubMed  CAS  Google Scholar 

  • Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343 Pt 3:621–626

    Article  Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 171:2680–2688

    PubMed  CAS  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411

    PubMed  CAS  Google Scholar 

  • Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Podtelejnikov AV, Mann M, Li R (1997) The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 7:519–529

    Article  PubMed  CAS  Google Scholar 

  • Winter DC, Choe EY, Li R (1999) Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci U S A 96:7288–7293

    Article  PubMed  CAS  Google Scholar 

  • Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Suka N, Carlson M, Grunstein M (2001) Tup1 utilizes histone H3/H2B-specific Hda1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007

    Article  PubMed  CAS  Google Scholar 

  • Zahringer H, Burgert M, Holzer H, Nwaka S (1997) Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett 412:615–620

    Article  PubMed  CAS  Google Scholar 

  • Zahringer H, Holzer H, Nwaka S (1998) Stability of neutral trehalase during heat stress in Saccharomyces cerevisiae is dependent on the activity of the catalytic subunits of cAMP-dependent protein kinase, Tpk1 and Tpk2. Eur J Biochem 255:544–551

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gasch, A.P. (2003). The environmental stress response: a common yeast response to diverse environmental stresses. In: Hohmann, S., Mager, W.H. (eds) Yeast Stress Responses. Topics in Current Genetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45611-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45611-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43926-4

  • Online ISBN: 978-3-540-45611-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics