Skip to main content

High-Energy Particles from γ-Ray Bursts

  • Chapter
  • First Online:
Physics and Astrophysics of Ultra-High-Energy Cosmic Rays

Part of the book series: Lecture Notes in Physics ((LNP,volume 576))

Abstract

The widely accepted interpretation of the phenomenology of γ-ray bursts (GRBs), bursts of 0.1 MeV-1 MeV photons lasting for a few seconds (see [1] for a review), is that the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a “fireball,” whose primal cause is not yet known (see [2],[3] for reviews). The recent detection of “afterglows,” delayed low energy (X-ray to radio) emission of GRBs (see [4] for review), confirmed the cosmological origin of the bursts, through the redshift determination of several GRB host-galaxies, and confirmed standard model predictions of afterglows that result from the collision of an expanding fireball with its surrounding medium (see[5] for review). In this review, the production in GRB fireballs of γ-rays, high-energy cosmic-rays and neutrinos is discussed in the light of recent GRB and ultra-high-energy cosmic-ray observations.

The fireball model is described in detail in Sect.2. We do not discuss in this section the issue of GRB progenitors, i.e. the underlying sources producing the relativistic fireballs. At present, the two leading progenitor scenarios are collapses of massive stars [6],[7], and mergers of compact objects [8],[9]. As explained in Sect.2, the evolution of the fireball and the emission of γ-rays and afterglow radiation (on time scale of a day and longer) are largely independent of the nature of the progenitor. Thus, although present observations provide stringent constraints on the fireball model, the underlying progenitors remain unknown (e.g. [10]; see [4],[5] for discussion). In Sect.3, constraints imposed on the fireball model by recent afterglow observations are discussed, which are of importance for high energy particle production.

The association of GRBs and ultra-high energy cosmic-rays (UHECRs) is discussed in Sect.4. Recent afterglow observations strengthen the evidence for GRB and UHECR association, which is based on two key points (see [11] for recent review). First, the constraints imposed on fireball model parameters by recent observations imply that acceleration of protons is possible to energy higher than previously assumed, 1021 eV. Second, the inferred local (z = 0) GRB energy generation rate of γ-rays, 1044erg/Mpc3yr, is remarkably similar to the local generation rate of UHECRs implied by cosmic-ray observations.

Based on lectures given at the ICTP Summer School on Astroparticle Physics and Cosmology (ICTP, Trieste Italy, June 2000), and at the VI Gleb Wataghin School on High Energy Phenomenology (UNICAMP, Campinas Brazil, July 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Fishman, C. A. Meegan: Ann. Rev. Astron. Astrophys. 33, 415 (1995)

    Article  ADS  Google Scholar 

  2. P. Mészáros: Proc. 17th Texas Symposium on Relativistic Astrophysics and Cosmology, Annals Ny. Acad. Sci. No. 759 (NY Acad. Sci., NY 1995)

    Google Scholar 

  3. T. Piran: Phys. Rep. 333, 529 (2000)

    Article  ADS  Google Scholar 

  4. S. R. Kulkarni, et al.: Proc. 5th Huntsville Gamma-Ray Burst Symposium, to appear, astro-ph/0002168

    Google Scholar 

  5. P. Mészáros: Astron. Astrophys. Supp. 138, 533 (1999)

    Article  Google Scholar 

  6. C. L. Fryer, S. E. Woosley: Astrophys. J. 502, L9 (1998)

    Article  ADS  Google Scholar 

  7. B. Paczynski: Proc. Gamma Ray Bursts: 4th Huntsville Symp., eds. C. A. Meegan, R. D. Pierce, & T. M. Koshut (Woodbury: AIP), 783 (1998)

    Google Scholar 

  8. J. Goodman: Astrophys. J. 308, L47 (1986)

    Article  ADS  Google Scholar 

  9. B. Paczyński: Astrophys. J. 308, L43 (1986)

    Article  ADS  Google Scholar 

  10. M. Livio, E. Waxman: Astrophys. J. 538, 187 (2000)

    Article  ADS  Google Scholar 

  11. E. Waxman: Nucl. Phys. B (Proc. Suppl.) 87B, 345 (2000)

    Google Scholar 

  12. S. C. Corbató, et al.: Nuc. Phys. 28B (Proc. Suppl.), 36 (1992); see also http://www.physics.adelaide.edu.au/astrophysics/FlysEye.html

  13. J. W. Cronin: Nucl. Phys. B (Proc. Suppl.) 28B, 213 (1992)

    Google Scholar 

  14. A. A. Watson: Proc. Nuclear and Particle Phys. 1993, eds. MacGregor, I. J. D. & Doyle, A. T. (Inst. Phys. Conf. Ser. 133) (Bristol:IoP), 135; see also http://www.auger.org/

  15. M. Teshima, et al.: Nuc. Phys. 28B (Proc. Suppl.), 169 (1992); see also http://www-ta.icrr.u-tokyo.ac.jp/

  16. M. Takeda, et al.: Astrophys. J. 522, 225 (1999)

    Article  ADS  Google Scholar 

  17. F. Halzen: Proc. 17th International Workshop on Weak Interactions and Neutrinos (Cape Town, South Africa, January 1999), p.123, astro-ph/9904216

    Google Scholar 

  18. K. S. Capelle, J. W. Cronin, G. Parente, E. Zas: Astropart. Phys. 8, 321 (1998)

    Article  ADS  Google Scholar 

  19. J. Linsley: Proc. 19th International Cosmic Ray Conference, 3, 438 (1985)

    Google Scholar 

  20. Y. Takahashi: Proc. 24th International Cosmic Ray Conference, 3, 595 (1995)

    Google Scholar 

  21. P. N. Bhat, et al.: Nature 359, 217 (1992)

    Article  ADS  Google Scholar 

  22. G. J. Fishman, et al.: Astrophys. J. Supp. 92, 229 (1994)

    Article  ADS  Google Scholar 

  23. J. H. Krolik, E. A. Pier: Astrophys. J. 373, 277 (1991)

    Article  ADS  Google Scholar 

  24. M. Baring: Astrophys. J. 418, 391 (1993)

    Article  ADS  Google Scholar 

  25. D. Band, et al.: Astrophys. J. 413, 281 (1993)

    Article  ADS  Google Scholar 

  26. M. Sommer, et al.: Astrophys. J. 422, L63 (1994)

    Article  ADS  Google Scholar 

  27. B. Paczyński: Astrophys. J. 363, 218 (1990)

    Article  ADS  Google Scholar 

  28. A. Shemi, T. Piran: Astrophys. J. 365, L55 (1990)

    Article  ADS  Google Scholar 

  29. M. Rees, P. Mészáros: Month. Not. R. Astron. Soc. 258, 41P (1992)

    ADS  Google Scholar 

  30. R. Narayan, B. Paczyńsky, T. Piran: Astrophys. J. 395, L83 (1992)

    Article  ADS  Google Scholar 

  31. B. Paczyński, G. Xu: Astrophys. J. 427, 708 (1994)

    Article  ADS  Google Scholar 

  32. P. Mészáros, M. Rees: Month. Not. R. Astron. Soc. 269, 41P (1994)

    Google Scholar 

  33. E. Woods, A. Loeb: Astrophys. J. 453, 583 (1995)

    Article  ADS  Google Scholar 

  34. R. Sari, T. Piran: Astrophys. J. 485, 270 (1997)

    Article  ADS  Google Scholar 

  35. R. D. Blandford, C. F. Mckee: Phys. Fluids 19, 1130 (1976)

    Article  MATH  ADS  Google Scholar 

  36. E. Waxman: Astrophys. J. 491, L19 (1997)

    Article  ADS  Google Scholar 

  37. R. Blandford, D. Eichler: Phys. Rep. 154, 1 (1987)

    Article  ADS  Google Scholar 

  38. W. I. Axford, E. Leer, G. Skadron, G.: Proc. 15th International Cosmic Ray Conference, Plovdiv (Bulgaria) (1977)

    Google Scholar 

  39. A. R. Bell: Month. Not. R. Astron. Soc. 182, 147 (1978)

    ADS  Google Scholar 

  40. R. D. Blandford, J. P. Ostriker: Astrophys. J. 221, L229 (1978)

    Article  Google Scholar 

  41. D. J. Helfand, R. H. Becker: Astrophys. J., 314, 203 (1987)

    Article  ADS  Google Scholar 

  42. P. J. Cargill, K. Papadopoulos K.: Astrophys. J., 329, L29 (1988)

    Article  ADS  Google Scholar 

  43. J. J. Brainerd, et al.: Proc. 19th Texas Symposium Relativistic Astrophysics and Cosmology, eds. E. Aubourg et al., Nuc. Phys. B (Proc. Supp.) 80B (2000)

    Google Scholar 

  44. D. Guetta, M. Spada, E. Waxman: Astrophys. J. 557, 399 (2001)

    Article  ADS  Google Scholar 

  45. R. M. Kippen: Proc. Second Rome Workshop: Gamma-Ray Bursts in the Aferglow Era (Rome, 2000), to appear, astro-ph/0201277

    Google Scholar 

  46. E. Waxman, B. T. Draine: Astrophys. J. 537, 796 (2000)

    Article  ADS  Google Scholar 

  47. E. Waxman: Astrophys. J. 485, L5 (1997)

    Article  ADS  Google Scholar 

  48. A. M. J. Wijers, M. J. Rees, P. Mészáros: Month. Not. R. Astron. Soc. 288, L51 (1997)

    ADS  Google Scholar 

  49. B. Paczyński, J. Rhoads: Astrophys. J. 418, L5 (1993)

    Article  ADS  Google Scholar 

  50. J. I. Katz: Astrophys. J. 432, L107 (1994)

    Article  ADS  Google Scholar 

  51. P. Mészáros, M. Rees: Astrophys. J. 476, 232 (1997)

    Article  ADS  Google Scholar 

  52. M. Vietri: Astrophys. J. 478, L9 (1997)

    Article  ADS  Google Scholar 

  53. E. Costa, et al.: Nature 387, 783 (1997)

    Article  ADS  Google Scholar 

  54. S. Mao, H. J. Mo: Astron. Astrophys. 339, L1 (1998)

    ADS  Google Scholar 

  55. M. Krumholtz, S. E. Thorsett, F. A. Harrison: Astrophys. J. 506, L81 (1998)

    Article  ADS  Google Scholar 

  56. D. W. Hogg, A. S. Fruchter: Astrophys. J. 520, 54 (1999)

    Article  ADS  Google Scholar 

  57. C. W. Akerlof, et al.: Nature, 398, 400 (1999)

    Article  ADS  Google Scholar 

  58. P. Mészáros, M. Rees: Month. Not. R. Astron. Soc. 306, L39 (1999)

    Article  ADS  Google Scholar 

  59. R. Sari, T. Piran: Astrophys. J. 517, L109 (1999)

    Article  ADS  Google Scholar 

  60. E. Waxman, S. Kulkarni, D. Frail, D.: Astrophys. J. 497, 288 (1998)

    Article  ADS  Google Scholar 

  61. D. Frail, E. Waxman, S. Kulkarni: Astrophys. J. 537, 191 (2000)

    Article  ADS  Google Scholar 

  62. D. L. Freedman, E. Waxman: Astrophys. J. 547, 922 (2001)

    Article  ADS  Google Scholar 

  63. T. Totani: Astron. Astrophys. Supp. 142, 443 (2000)

    Article  ADS  Google Scholar 

  64. K. Koyama, et al.: Nature 378, 255 (1995)

    Article  ADS  Google Scholar 

  65. A. M. Hillas: Ann. Rev. Astron. Astrophys. 22, 425 (1984)

    Article  ADS  Google Scholar 

  66. R. M.& Kulsrud: Proc. Particle Acceleration Mechanisms in Astrophysics, eds. J. Arons, C. Max, and C. McKee (AIP 56, NY 1979)

    Google Scholar 

  67. E. Waxman: Phys. Rev. Lett. 75, 386 (1995)

    Article  ADS  Google Scholar 

  68. J. P. Rachen, P. Mészáros, P.: Proc. 4th Huntsville Symposium on GRBs, AIP Conf. Proc. 428, Gamma Ray Bursts, p. 776 (1998)

    Google Scholar 

  69. Y. A. Gallant, A. Achterberg: Month. Not. R. Astron. Soc. 305, L6 (1999)

    Article  ADS  Google Scholar 

  70. M. Vietri: Astrophys. J. 453, 883 (1995)

    Article  ADS  Google Scholar 

  71. C. D. Dermer: Astrophys. J., submitted, astro-ph/0005440

    Google Scholar 

  72. D. J. Bird, et al.: Phys. Rev. Lett. 71, 3401 (1993)

    Article  ADS  Google Scholar 

  73. D. J. Bird, et al.: Astrophys. J. 424, 491 (1994)

    Article  ADS  Google Scholar 

  74. N. Hayashida, et al.: Phys. Rev. Lett. 73, 3491 (1994)

    Article  ADS  Google Scholar 

  75. S. Yoshida, et al.: Astropart. Phys. 3, 151 (1995)

    Article  Google Scholar 

  76. M. Takeda, et al.: Phys. Rev. Lett. 81, 1163 (1998)

    Article  ADS  Google Scholar 

  77. A. A. Watson: Nucl. Phys. B (Proc. Suppl.) 22B, 116 (1991)

    Google Scholar 

  78. T. K. Gaisser, et al.: Phys. Rev. D 47, 1919 (1993)

    Article  ADS  Google Scholar 

  79. B. R. Dawson, R. Meyhandan, K. M. Simpson: Astropart. Phys. 9, 331 (1998)

    Article  ADS  Google Scholar 

  80. N. N. Efimov, et al.: Proc. International Symposium on Astrophysical Aspects of the Most Energetic Cosmic-Rays, eds. M. Nagano and F. Takahara (World Scientific, Singapore, 1991), p. 20

    Google Scholar 

  81. N. Hayashida, et al.: Astrophys. J. 522, 225 (1999) (and appendix astroph/0008102)

    Article  ADS  Google Scholar 

  82. E. Waxman: Astrophys. J. 452, L1 (1995)

    Article  ADS  Google Scholar 

  83. B. J. Boyle, R. J. Terlevich: Month. Not. R. Astron. Soc. 293, L49 (1998)

    Article  ADS  Google Scholar 

  84. S. J. Lilly, O. Le Fevre, F. Hammer, D. Crampton: Astrophys. J. 460, L1 (1996)

    Article  ADS  Google Scholar 

  85. P. Madau, et al.: Month. Not. R. Astron. Soc. 283, 1388 (1996)

    ADS  Google Scholar 

  86. P. C. Hewett, C. B. Foltz, F. Chaffee, F.: Astrophys. J. 406, 43 (1993)

    Article  ADS  Google Scholar 

  87. M. Schmidt, D. P. Schneider, J. E. Gunn: Astron. J. 110, 68 (1995)

    Article  ADS  Google Scholar 

  88. K. Greisen: Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  89. G. T. Zatsepin, V. A. Kuzmin: JETP Lett. 4, 78 (1966)

    ADS  Google Scholar 

  90. J. N. Bahcall, E. Waxman: Astrophys. J. 542, 542 (2000)

    Article  ADS  Google Scholar 

  91. F. A. Aharonian, J. W. Cronin: Phys. Rev. D 50, 1892 (1994)

    Article  ADS  Google Scholar 

  92. M. Milgrom, V. Usov: Astrophys. J. 449, L37 (1995)

    Article  ADS  Google Scholar 

  93. P. P. Kronberg, M. Reinhardt, M. Simard-Normandin: Astron. Astrophys. 61, 771 (1977)

    ADS  Google Scholar 

  94. P. P. Kronberg: Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  95. E. Waxman, P. Coppi: Astrophys. J. 464, L75 (1996)

    Article  ADS  Google Scholar 

  96. J. Miralda-Escudé, E. Waxman: Astrophys. J. 462, L59 (1996)

    Article  ADS  Google Scholar 

  97. G. Sigl, M. Lemoine, A. V. Olinto: Phys. Rev. D 56, 4470 (1997)

    Article  ADS  Google Scholar 

  98. M. Lemoine, G. Sigl, A. V. Olinto, D. N. Schramm: Astrophys. J. 486, L115 (1997)

    Article  ADS  Google Scholar 

  99. E. Waxman, J. Miralda-Escudé: Astrophys. J. 472, L89 (1996)

    Article  ADS  Google Scholar 

  100. E. Waxman, J. N. Bahcall: Phys. Rev. Lett. 78, 2292 (1997)

    Article  ADS  Google Scholar 

  101. E. Waxman, J. N. Bahcall: Phys. Rev. D 59, 023002 (1999)

    Article  ADS  Google Scholar 

  102. F. Halzen, D. W. Hooper: Astrophys. J. 527, L93 (1999)

    Article  ADS  Google Scholar 

  103. J. Alvarez-Muniz, F. Halzen, D. W. Hooper: Phys. Rev. D 62, 093015 (2000)

    Article  ADS  Google Scholar 

  104. D. Guetta, M. Spada, E. Waxman: Astrophys. J. 559, 101 (2001)

    Article  ADS  Google Scholar 

  105. J. P. Rachen, P. Mészáros: Phys. Rev. D 58, 123005 (1998)

    Article  ADS  Google Scholar 

  106. A. Mücke, et al.: Pub. Astron. Soc. Aust. 16, 160 (1999)

    Google Scholar 

  107. M. Vietri: Phys. Rev. Lett. 80, 3690 (1998)

    Article  ADS  Google Scholar 

  108. R. A. Chevalier, Z. Li: Astrophys. J., 536, 195 (2000)

    Article  ADS  Google Scholar 

  109. S. E. Woosley, A. I. MacFadyen: Astron. Astrophys. Supp. 138, 499 (1999)

    Article  ADS  Google Scholar 

  110. E. Waxman, J. N. Bahcall: Astrophys. J. 541, 707 (2000)

    Article  ADS  Google Scholar 

  111. Z. G. Dai, T. Lu: Astrophys. J. 551, 249 (2001)

    Article  ADS  Google Scholar 

  112. E. V. Derishev, V. V. Kocharovsky, Vl.V. Kocharovsky: Astrophys. J. 521, 640 (1999)

    Article  ADS  Google Scholar 

  113. J. N. Bahcall, P. Mészáros: Phys. Rev. Lett., 85, 1362 (2000)

    Article  ADS  Google Scholar 

  114. P. Mészáros, M. Rees: Astrophys. J. 541, L5 (2000)

    Article  ADS  Google Scholar 

  115. T. K. Gaisser, F. Halzen, T. Stanev: Phys. Rep. 258, 173 (1995)

    Article  ADS  Google Scholar 

  116. R. Gandhi, C. Quigg, M. Reno, I. Sarcevic: Phys. Rev. D 58, 093009 (1998)

    Article  ADS  Google Scholar 

  117. J. N. Bahcall: Neutrino Astrophysics, Cambridge University Press (New-York, 1989), pp. 438–460

    Google Scholar 

  118. D. Casper, et al.: Phys. Rev. Lett. 66, 2561 (1991)

    Article  ADS  Google Scholar 

  119. Y. Fukuda, et al.: Phys. Lett. B335, 237 (1994)

    ADS  Google Scholar 

  120. G. L. Fogli, E. Lisi: Phys. Rev. D 52, 2775 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waxman, E. (2001). High-Energy Particles from γ-Ray Bursts. In: Lemoine, M., Sigl, G. (eds) Physics and Astrophysics of Ultra-High-Energy Cosmic Rays. Lecture Notes in Physics, vol 576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45615-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45615-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42899-2

  • Online ISBN: 978-3-540-45615-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics