Skip to main content

On the Construction of Effective Random Sets

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2002 (MFCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2420))

Abstract

We give a direct and rather simple construction of Martin-Löf random and rec-random sets with certain additional properties. First, reviewing the result of Gács and Kučera, given any set X we construct a Martin-Löf random set R from which X can be decoded effectively. Second, by essentially the same construction we obtain a Martin-Löf random set R that is computably enumerable selfreducible. Alternatively, using the observation that a set is computably enumerable selfreducible if and only if its associated real is computably enumerable, the existence of such a set R follows from the known fact that every Chaitin Ω real is Martin-Löf random and computably enumerable. Third, by a variant of the basic construction we obtain a rec-random set that is weak truth-table autoreducible.

The mentioned results on self- and autoreducibility complement work of Ebert, Merkle, and Vollmer [7,8,9], from which it follows that no Martin-Löf random set is Turing-autoreducible and that no rec-random set is truth-table autoreducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies and A. Kučera. Randomness in computability theory. In P. A. Cholak et al. (eds.), Computability Theory and Its Applications. Current Trends and Open Problems. Contemporary Mathematics 257:1–14, American Mathematical Society (AMS), 2000.

    Google Scholar 

  2. K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi (ed.), Complexity, Logic, and Recursion Theory, p. 1–47. Dekker, New York, 1997.

    Google Scholar 

  3. T. M. Apostol. Mathematical Analysis, third edition. Addison Wesley, 1978.

    Google Scholar 

  4. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I, Springer, 1995.

    Google Scholar 

  5. C. Calude, Information and Randomness, Springer-Verlag, 1994.

    Google Scholar 

  6. C. S. Calude. A characterization of c.e. random reals. Theoretical Computer Science 271:3–14, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Ebert. Applications of Recursive Operators to Randomness and Complexity. Ph.D. Thesis, University of California at Santa Barbara, 1998.

    Google Scholar 

  8. T. Ebert and H. Vollmer. On the autoreducibility of random sequences. In: M. Nielsen and B. Rovan (eds.), Mathematical Foundations of Computer Science 2000, Lecture Notes in Computer Science 1893:333–342, Springer, 2000.

    Chapter  Google Scholar 

  9. T. Ebert and W. Merkle. Autoreducibility of random sets: a sharp bound on the density of guessed bits. Mathematical Foundations of Computer Science 2002, this volume.

    Google Scholar 

  10. P. Gács. Every sequence is reducible to a random one. Information and Control 70:186–192, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Kučera. Measure, Π 01 -classes and complete extensions of PA. In: H.-D. Ebbinghaus et al. (eds.), Recursion Theory Week. Lecture Notes in Mathematics 1141:245–259, Springer, 1985.

    Google Scholar 

  12. A. Kučera. On the use of diagonally nonrecursive functions. In: H.-D. Ebbinghaus et al. (eds.), Logic Colloquium’ 87. Studies in Logic and the Foundations of Mathematics 129:219–239, North-Holland, 1989.

    Google Scholar 

  13. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications, second edition. Springer, 1997.

    Google Scholar 

  14. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L. Selman (eds.), Complexity Theory Retrospective II, p. 225–260, Springer, 1997.

    Google Scholar 

  16. P. Martin-Löf. The definition of random sequences. Information and Control 9(6):602–619, 1966.

    Article  MathSciNet  Google Scholar 

  17. E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. Doctoral dissertation, Universitat Politècnica de Catalunya, Barcelona, Spain, 1994.

    Google Scholar 

  18. P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  19. C.-P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246–258, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  20. C.-P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics 218, Springer, 1971.

    Google Scholar 

  21. R. I. Soare. Recursively Enumerable Sets and Degrees. Springer, 1987.

    Google Scholar 

  22. S. A. Terwijn. Computability and Measure. Doctoral dissertation, Universiteit van Amsterdam, Amsterdam, Netherlands, 1998.

    Google Scholar 

  23. B. A. Trakhtenbrot, On autoreducibility. Soviet Math. Doklady, 11:814–817, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merkle, W., Mihailović, N. (2002). On the Construction of Effective Random Sets. In: Diks, K., Rytter, W. (eds) Mathematical Foundations of Computer Science 2002. MFCS 2002. Lecture Notes in Computer Science, vol 2420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45687-2_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-45687-2_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44040-6

  • Online ISBN: 978-3-540-45687-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics