Skip to main content

Part of the book series: Les Houches - Ecole d’Ete de Physique Theorique ((LHSUMMER,volume 75))

  • 588 Accesses

Abstract

Motor proteins are the cell’s workforce. They are specialized molecules which convert chemical energy to mechanical work, thereby generating force and directional motion. In some situations motor proteins act individually, but more commonly they cooperate in large ensembles to accomplish cellular functions. How do molecular motors work? And how do they work together? This lecture course recounts theoretical approaches to these questions, which complement the experimental investigations of motor protein systems described in Jonathon Howard’s course. The methods of non-equilibrium statistical mechanics permit a general analysis of how chemical energy can most effectively be used to generate the movement of an individual motor. The class of models known as “isothermal ratchets”, in particular, is a powerful tool for discussing the principles of energy transduction. More specific kinetic models, such as the “swinging lever-arm” model which is based on the known structure and chemistry of the myosin protein, indicate how these molecules are designed to work efficiently together to drive the contraction of muscle. Both classes of model indicate what types of collective effects can arise when many molecules operate in concert. Cooperative interactions within a team of motor proteins may lead to dynamical instabilities and hysteretic behaviour, which can be exploited to generate oscillations. Physiological processes which may rely on such instabilities include the vibration of insect flight muscle and the undulation of spermatozoid flagella. Motor proteins also play functional roles in sensory systems — hearing being a particularly intriguing example. Hair bundles, which are the mechano-sensors that detect motion in the inner ear, have been found to vibrate spontaneously. Motor proteins appear to play a role either in generating the oscillations, or in maintaining the bundles at the threshold of the oscillatory instability. Poised on the verge of vibrating, they are especially responsive to faint sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kreis and R. Vale, Cytoskeletal Motor Proteins (Oxford University Press, New York, 1993).

    Google Scholar 

  2. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson, Molecular Biology of the Cell (Garland, New York, 1994).

    Google Scholar 

  3. D. Bray, Cell Movements (Garland, New York, 2001).

    Google Scholar 

  4. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland Massachusetts, 2001).

    Google Scholar 

  5. M.O. Magnasco, Phys. Rev. Lett. 71 (1993) 1477.

    Article  ADS  Google Scholar 

  6. J. Prost, J.F. Chauwin, L. Peliti and A. Ajdari, Phys. Rev. Lett. 72 (1994) 2652.

    Article  ADS  Google Scholar 

  7. R.D. Astumian and M. Bier, Phys. Rev. Lett. 72 (1994) 1766.

    Article  ADS  Google Scholar 

  8. M.O. Magnasco, Phys. Rev. Lett. 72 (1994) 2656.

    Article  ADS  Google Scholar 

  9. C.S. Peskin and G.F. Oster, Biophys. J. 68 (1995) 202.

    Google Scholar 

  10. T.A.J. Duke and S. Leibler, Biophys. J. 71 (1996) 1235.

    Article  ADS  Google Scholar 

  11. I. Derènyi and T. Vicsek, Proc. Natl. Acad. Sci. USA 93 (1996) 6775.

    Article  ADS  Google Scholar 

  12. F. Jülicher, A. Ajdari and J. Prost, Rev. Mod. Phys. 69 (1997) 1269.

    Article  ADS  Google Scholar 

  13. R.D. Astumian, Science 276 (1997) 917.

    Article  Google Scholar 

  14. M.E. Fisher and A.B. Kolomeisky, Proc. Natl. Acad. Sci. USA 96 (1999) 6597.

    Article  ADS  Google Scholar 

  15. R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics, vol. I, chap. 46 (Addison-Wesley, Reading MA, 1966).

    Google Scholar 

  16. A. Ajdari and J. Prost, C.R. Acad. Sci. Paris II 315 (1992) 1635.

    Google Scholar 

  17. J. Rousselet, L. Salome, A. Ajdari and J. Prost, Nature 370 (1994) 446.

    Article  ADS  Google Scholar 

  18. L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan and A.J. Libchaber, Phys. Rev. Lett. 74 (1995) 1504.

    Article  ADS  Google Scholar 

  19. J.S. Bader, R.W. Hammond, S.A. Henck, M.W. Deem, G.A. McDermott, J.M. Bustillo, J.W. Simpson, G.T. Mulhern and J.M. Rothberg, Proc. Natl. Acad. Sci. USA 96 (2000) 13165.

    Article  ADS  Google Scholar 

  20. C.S. Peskin, G.M. Odell and G.F. Oster, Biophys. J. 65 (1993) 316.

    Article  ADS  Google Scholar 

  21. M. Dogterom and B. Yurke, Science 278 (1997) 856.

    Article  ADS  Google Scholar 

  22. H.A. Kramers, Physica 7 (1940) 284.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. A. Parmeggiani, F. Jülicher, A. Ajdari and J. Prost, Phys. Rev. E 60 (1999) 2127.

    Article  ADS  Google Scholar 

  24. W.O. Hancock and J. Howard, Proc. Natl. Acad. Sci. USA 96 (1999) 13147.

    Article  ADS  Google Scholar 

  25. K. Visscher, M.J. Schnitzer and S.M. Block, Nature 400 (1999) 184.

    Article  ADS  Google Scholar 

  26. P.D. Boyer, Annu. Rev. Biochem. 66 (1997) 717.

    Article  Google Scholar 

  27. H. Wang and G. Oster, Nature 396 (1998) 279.

    Article  ADS  Google Scholar 

  28. H.E. Huxley, Science 164 (1969) 1356.

    Article  ADS  Google Scholar 

  29. A.F. Huxley and R.M. Simmons, Nature 233 (1971) 533.

    Article  ADS  Google Scholar 

  30. T.L. Hill, Prog. Biophys. Mol. Biol. 28 (1974) 267.

    Article  Google Scholar 

  31. E. Eisenberg, T. Hill and Y. Chen, Biophys. J. 29 (1980) 195.

    Article  Google Scholar 

  32. S. Leibler and D.A. Huse, J. Cell Biol. 121 (1993) 1357.

    Article  Google Scholar 

  33. T.A.J. Duke, Proc. Natl. Acad. Sci. USA 96 (1999) 2770.

    Article  ADS  Google Scholar 

  34. A. Vilfan, E. Frey and F. Schwabl, Euro. Phys. Lett. 45 (1999) 283.

    Article  ADS  Google Scholar 

  35. M.K. Reedy, K.C. Holmes and R.T. Tregear, Nature 328 (1987) 536.

    Article  Google Scholar 

  36. I. Rayment, H.M. Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes and R.A. Milligan, Science 261 (1993) 58.

    Article  ADS  Google Scholar 

  37. J.T. Finer, R.M. Simmons and J.A. Spudich, Nature 368 (1994) 113.

    Article  ADS  Google Scholar 

  38. J.E. Molloy, J.E. Burns, J. Kendrick-Jones, R.T. Tregear and D.C.S. White, Nature 378 (1995) 209.

    Article  ADS  Google Scholar 

  39. K.C. Holmes, Curr. Biol. 7 (1997) R112–R118.

    Article  Google Scholar 

  40. R.W. Lymn and E.W. Taylor, Biochem. 10 (1971) 4617.

    Article  Google Scholar 

  41. C. Veigel, M.L. Bartoo, D.C. White, J.C. Sparrow and J.E. Molloy, Biophys. J. 75 (1998) 1424.

    Article  Google Scholar 

  42. K. Tawada and K. Sekimoto, J. Theor. Biol. 150 (1991) 193.

    Article  Google Scholar 

  43. M. Whittaker, E.M. Wilson-Kubalek, J.E. Smith, L. Faust, R.A. Milligan and H.L. Sweeney, Nature 378 (1995) 748.

    Article  ADS  Google Scholar 

  44. C. Veigel, L.M. Coluccio, J.D. Jontes, J.C. Sparrow, R.A. Milligan and J.E. Molloy, Nature 398 (1999) 530.

    Article  ADS  Google Scholar 

  45. A.V. Hill, Proc. R. Soc. B 126 (1938) 136.

    Article  ADS  Google Scholar 

  46. K.A.P. Edman, J. Physiol. 404 (1988) 301.

    Google Scholar 

  47. R.J. Podolsky, Nature 188 (1960) 666.

    Article  ADS  Google Scholar 

  48. K.A.P. Edman and N.A. Curtin, J. Physiol. 534 (2001) 553.

    Article  Google Scholar 

  49. F. Jülicher and J. Prost, Phys. Rev. Lett. 75 (1995) 2618.

    Article  ADS  Google Scholar 

  50. M. Badoual, F. Jülicher and J. Prost, Proc. Natl. Acad. Sci. USA 99 (2002) 6696.

    Article  ADS  Google Scholar 

  51. S.A. Endow and H. Higuchi, Nature 406 (2000) 913.

    Article  ADS  Google Scholar 

  52. D. Riveline, A. Ott, F. Jülicher, O. Cardoso, S. Magnusdottir, J.L. Viovy and J. Prost, Eur. Biophys. J. 27 (1998) 403.

    Article  Google Scholar 

  53. F. Jülicher and J. Prost, Phys. Rev. Lett. 78 (1997) 4510.

    Article  ADS  Google Scholar 

  54. F. Jülicher, C.R. Acad. Sci. Paris Serie IV 2 (2001) 849.

    Google Scholar 

  55. J.W.S. Pringle, in R.T. Tregear, Insect Flight Muscles (North-Holland, Amsterdam 1977).

    Google Scholar 

  56. K. Yasuda, Y. Shindo and S. Ishiwata, Biophys. J. 70 (1996) 1823.

    Article  ADS  Google Scholar 

  57. H. Fujita and S. Ishiwata, Biophys. J. 75 (1998) 1439.

    Article  ADS  Google Scholar 

  58. L. Bourdieu, T.A.J. Duke, M.B. Elowitz, D.A. Winkelmann, S. Leibler and A. Libchaber Phys. Rev. Lett. 75 (1995) 176.

    Article  ADS  Google Scholar 

  59. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944).

    MATH  Google Scholar 

  60. I.R. Gibbons, J. Cell Biol. 91 (1981) 107s.

    Article  Google Scholar 

  61. C.J. Brokaw, Science 178 (1972) 455.

    Article  ADS  Google Scholar 

  62. M. Murase, The Dynamics of Cell Motility (Wiley, New York, 1992).

    Google Scholar 

  63. S. Camalet, F. Jülicher and J. Prost, Phys. Rev. Lett. 82 (1999) 1590.

    Article  ADS  Google Scholar 

  64. S. Camalet and F. Jülicher, New J. Phys. 2 (2000) 1.

    Article  MathSciNet  Google Scholar 

  65. P.J. Dallos, J. Neurosci. 12 (1992) 4575.

    Google Scholar 

  66. T. Gold, Proc. R. Soc. B 135 (1948) 462.

    Article  ADS  Google Scholar 

  67. H.L.F. Helmholtz, On the Sensations of Tone (Dover, New York, 1954).

    Google Scholar 

  68. W.S. Rhode, J. Acoust. Soc. Am. 49 (1971) 1218.

    Article  ADS  Google Scholar 

  69. P.M. Sellick, R. Patuzzi and B.M. Johnstone, J. Acoust. Soc. Am. 72 (1982) 131.

    Article  ADS  Google Scholar 

  70. D.T. Kemp, J. Arch. Otorhinolaryngol. 224 (1979) 37.

    Article  Google Scholar 

  71. A.J. Hudspeth and V.S. Markin, Physics Today 2 (1994) 22.

    Article  Google Scholar 

  72. A.C. Crawford and R. Fettiplace, J. Physiol. 364 (1985) 359.

    Google Scholar 

  73. P. Martin and A.J. Hudpeth, Proc. Natl. Acad. Sci. USA 96 (1999) 14306.

    Article  ADS  Google Scholar 

  74. J.R. Holt and D.P. Corey, Proc. Natl. Acad. Sci. USA 97 (2000) 11730.

    Article  ADS  Google Scholar 

  75. Y. Choe, M.O. Magnasco and A.J. Hudspeth, Proc. Natl. Acad. Sci. USA 95 (1998) 15321.

    Article  ADS  Google Scholar 

  76. S. Camalet, T.A.J. Duke, F. Jülicher and J. Prost, Proc. Natl. Acad. Sci. USA 97 (2000) 3138.

    Article  Google Scholar 

  77. V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth and M.O. Magnasco, Phys. Rev. Lett. 84 (2000) 5232.

    Article  ADS  Google Scholar 

  78. L. Robles and M.A. Ruggero, Physiol. Rev. 81 (2001) 1305.

    Google Scholar 

  79. L.G. Tilney and J.C. Saunders, J. Cell Biol. 96 (1983) 807.

    Article  Google Scholar 

  80. P. Martin, A.D. Mehta and A.J. Hudpeth, Proc. Natl. Acad. Sci. USA 97 (2000) 12026.

    Article  ADS  Google Scholar 

  81. J. Howard and A.J. Hudpeth, Neuron 1 (1988) 189.

    Article  Google Scholar 

  82. D.P. Corey and A.J. Hudspeth, J. Neurosci. 3 (1893) 962.

    Google Scholar 

  83. A. Vilfan and T. Duke (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Flyvbjerg F. Jülicher P. Ormos F. David

Rights and permissions

Reprints and permissions

Copyright information

© 2002 EDP Sciences, Springer-Verlag

About this paper

Cite this paper

Duke, T. (2002). Modelling motor protein systems. In: Flyvbjerg, F., Jülicher, F., Ormos, P., David, F. (eds) Physics of bio-molecules and cells. Physique des biomolécules et des cellules. Les Houches - Ecole d’Ete de Physique Theorique, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45701-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45701-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44132-8

  • Online ISBN: 978-3-540-45701-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics