Skip to main content

Topological Characterization of Porous Media

  • Chapter
  • First Online:
Morphology of Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 600))

Abstract

It is an attractive approach to predict flow and in based on direct investigations of their structure. The most crucial property is the of the structure because it is difficult to measure. This is true both at the pore scale, which may be represented as a binary structure, and at a larger scale defined by continuous macroscopic state variables as phase density or. At the pore scale a function is introduced which is defined by the as a function of the pore diameter. This function is used to generate of the porous structure that allow to predict bulk hydraulic properties of the material. At the continuum scale the structure is represented on a grey scale representing the porosity of the material with a given resolution. Here, topology is quantified by a connectivity function defined by the Euler characteristic as a function of a porosity threshold. Results are presented for the structure of natural soils measured by. The significance of topology at the continuum scale is demonstrated through numerical simulations. It is found that the effective permeabilities of two heterogeneous having the same auto-covariance but different topology differ considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Adler, C. G. Jacquin, J. A. Quiblier, Flow in simulated porous media, Int. J. Multiphase Flow 16 (1990) 691–712

    Article  MATH  Google Scholar 

  2. C. Arns, M. Knackstedt, K. Mecke, Characterising the morphology of disordered materials, Lecture Notes in Physics (2002), this volume

    Google Scholar 

  3. C. Beisbart, R. Dahlke, K. Mecke, H. Wagner, Vector-and tensor-valued descriptors of spatial patterns, Lecture Notes in Physics (2002), this volume

    Google Scholar 

  4. B. Berkowitz, I. Balberg, Percolation theory and its application to groundwater hydrology, Water Resources Res. 29 (1993) 775–794

    Article  ADS  Google Scholar 

  5. M. A. Celia, P. C. Reeves, L. A. Ferrand, Recent advances in pore scale models, Rev.Geophys. 33 (1995) 1049–1057

    Article  ADS  Google Scholar 

  6. R. Chandler, J. Koplik, K. Lerman, J. F. Willemsen, Capillary displacement and percolation in porous media, J. Fluid Mech. 119 (1982) 249–267

    Article  MATH  ADS  Google Scholar 

  7. I. Chatzis, F. A. L. Dullien, Modeling pore structure by 2-D and 3-D networks with application to sandstone, J. Can. Pet. Technol. 16 (1977) 97–108

    Google Scholar 

  8. R. T. DeHoff, Use of the disector to estimate the Euler characteristic of three dimensional microstructures, Acta Stereol. 6 (1987) 133–140

    Google Scholar 

  9. I. Fatt, The network model of porous media. I. Capillary pressure characteristics, Pet. Trans. AIME 207 (1956) 144–159

    Google Scholar 

  10. I. Fatt, The network model of porous media. II. Dynamic properties of a single size tube network, Pet. Trans. AIME 207 (1956) 160–163

    Google Scholar 

  11. I. Fatt, The network model of porous media. III. Dynamic properties of networks with tube radius distribution, Pet. Trans. AIME 207 (1956) 164–181

    Google Scholar 

  12. L. A. Ferrand, M. A. Celia, The effect of heterogeneity on the drainage capillary pressure-saturation relation, Water Resour. Res. 28(3) (1992) 859–870

    Article  ADS  Google Scholar 

  13. S. Friedman, N. Seaton, On the transport properties of anisotropic networks of capillaries, Water Resour. Res. 32 (1996) 339–347

    Article  ADS  Google Scholar 

  14. H. Hadwiger, Vorlesung über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957

    Google Scholar 

  15. R. Hilfer, Geometric and dielectric characterization of porous media, Phys. Rev. B 44 (1991) 60

    Article  ADS  Google Scholar 

  16. R. Hilfer, Local-porosity theory for flow in porous media, Physical Review B 45 (1992) 7115–7121

    Article  ADS  Google Scholar 

  17. R. Hilfer, Transport and relaxation phenomena in porous media, Adv. Chem. Phys. XCII (1996) 299–424

    Article  Google Scholar 

  18. R. Hilfer, T. Rage, B. Virgin, Local percolation probabilities for a natural sandstone, Physica A 241 (1997) 105–110

    Article  ADS  Google Scholar 

  19. J.W. Hopmans, M. Cislerova, T. Vogel, X-ray tomography of soil properties, In: Tomography of Soil-Water-Root Processes. Eds.: Ande S.H. and J.W. Hopmans. ASA, SSSA Madison, Wisconsin, USA (1994) 17–28

    Google Scholar 

  20. G. R. Jerauld, S. J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling, Transort in Porous Media 5(2) (1990) 103–151

    Article  Google Scholar 

  21. M. A. Knackstedt, A. P. Sheppard, M. Sahimi, Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity, Adv. Water Res. 24 (2001) 257–277

    Article  Google Scholar 

  22. R. Magerle, Nanotomography, Lecture Notes in Physics (2002), this volume

    Google Scholar 

  23. J. Mecke, D. Stoyan, The specific connectivity number of random networks, Adv. Appl. Prob. (SGSA) 33 (2001) 576–583

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Mecke, H. Wagner, Euler characteristic and related measures for random geometric sets, J. Stat. Phys. 64 (1991) 843

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. K. Mecke, Additivity, convexity, and beyond: applications of Minkowski Functionals in statistical physics, Lecture Notes in Physics 554 (2000) 111–184

    Google Scholar 

  26. K. Mecke, D. Stoyan, Statistical physics and spatial statistics-the art of analyzing and modeling spatial structures and pattern formation, Lecture Notes in Physics 554.

    Google Scholar 

  27. J. Ohser, W. Nagel, K. Schladitz, The Euler number of discretized sets, Lecture Notes in Physics (2002), this volume

    Google Scholar 

  28. J. Ohser, W. Nagel, The estimation of the Euler-poincaré characteristic from observations on parallel sections, J. Microsc. 184 (1996) 117–126

    Article  Google Scholar 

  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C. The Art of Scientific Computing, second edition Edition, Cambridge University Press, Cambridge, 1992

    MATH  Google Scholar 

  30. J. Quiblier, A new three dimensional modeling technique for studying porous media, J. Colloid Interface Sci. 98 (1984) 84–102

    Google Scholar 

  31. H. Rajaram, L. A. Ferrand, M. A. Celia, Prediction of relative permeabilities for unconsolidated soils using pore-scale network models, Water Resour. Res. 33 (1997) 43–52

    Article  ADS  Google Scholar 

  32. A. P. Roberts, S. Torquato, Chord-distribution functions of three-dimensional random media: approximate first-passage times of gaussian processes, Phys. Rev. E 59 (1999) 4953–4963

    Article  ADS  MathSciNet  Google Scholar 

  33. M. J. L. Robin, A. L. Gutjahr, E. A. Sudicky, J. L. Wilson, Cross-correlated random field generation with the direct fourier transform method, Water Resour. Res. 29 (1993) 2385–2397

    Article  ADS  Google Scholar 

  34. V. Robns, Computational topology for point data: Betti numbers and α-shapes, Lecture Notes in Physics (2002), this volume

    Google Scholar 

  35. H. Rogasik, J.W. Crawford, O. Wendroth, I. M. Young, M. Joschko, K. Ritz, Discrimination of soil phases by dual energy X-ray tomography, Soil Sci. Soc. Am. J. 63 (1999) 741–751

    Article  Google Scholar 

  36. K. Roth, Steady state flow in an unsaturated, two-dimensional, macroscopically homogeneous, miller-similar medium, Water Resources Res. 31 (1995) 2127–2140

    Article  ADS  Google Scholar 

  37. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982

    MATH  Google Scholar 

  38. D. C. Sterio, The unbiased estimation of number and sizes of arbitrary particles using the disector, J. of Microsc. 134 (1984) 127–136

    Google Scholar 

  39. V. C. Tidwell, L. C. Meigs, T. Christian-Frear, C.M. Boney, Effects of spatially heterogeneous porosity on matrix diffusion as investigated by X-ray absorption imaging, J. Contam. Hydrol. 42 (2000) 285–302

    Article  Google Scholar 

  40. H. J. Vogel, Digital unbiased estimation of the Euler-Poincar’e characteristic in different dimensions, Acta Stereol. 16/2 (1997) 97–104

    Google Scholar 

  41. H. J. Vogel, Morphological determination of pore connectivity as a function of pore size using serial sections, Europ. J. Soil Sci. 48 (1997) 365–377

    Article  Google Scholar 

  42. H. J. Vogel, K. Roth, A new approach for determining effective soil hydraulic functions, Europ. J. Soil Sci. 49 (1998) 547–556

    Article  Google Scholar 

  43. H. J. Vogel, A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models, Europ. J. Soil Sci. 51 (2000) 99–105

    Article  Google Scholar 

  44. H.-J. Vogel, K. Roth, Quantitative morphology and network representation of soil pore structure, Adv. Water Res. 24 (2001) 233–242

    Article  Google Scholar 

  45. A. W. Western, G. Blöschl, R. B. Grayson, Toward capturing hydrologcally significant connectivity in spatial patterns, Water Resour. Res. 37 (2001) 83–97

    Article  ADS  Google Scholar 

  46. J. Widjajakusuma, C. Manwart, B. Biswal, R. Hilfer, Exact and approximate calculations for the conductivity of sandstones, Physica A 270 (1999) 325–331

    Article  ADS  Google Scholar 

  47. W. R. Wise, A new insight on pore structure and permeability, Water Resour. Res. 28 (1992) 189–198

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, HJ. (2002). Topological Characterization of Porous Media. In: Mecke, K., Stoyan, D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45782-8_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45782-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44203-5

  • Online ISBN: 978-3-540-45782-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics