Skip to main content

Path Integrals and Their Application to Dissipative Quantum Systems

  • Chapter
  • First Online:
Coherent Evolution in Noisy Environments

Part of the book series: Lecture Notes in Physics ((LNP,volume 611))

Abstract

The coupling of a system to its environment is a recurrent subject in this collection of lecture notes. The consequences of such a coupling are threefold. First of all, energy may irreversibly be transferred from the system to the environment thereby giving rise to the phenomenon of dissipation. In addition, the fluctuating force exerted by the environment on the system causes fluctuations of the system degree of freedom which manifest itself for example as Brownian motion. While these two effects occur both for classical as well as quantum systems, there exists a third phenomenon which is specific to the quantum world. As a consequence of the entanglement between system and environmental degrees of freedom a coherent superposition of quantum states may be destroyed in a process referred to as decoherence. This effect is of major concern if one wants to implement a quantum computer. Therefore, decoherence is discussed in detail in Chap. 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Weiss: Quantum Dissipative Systems (World Scientific 1999)

    Google Scholar 

  2. T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, W. Zwerger: Quantum transport and dissipation (Wiley-VCH 1998)

    Google Scholar 

  3. H. Kleinert: Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific 1995)

    Google Scholar 

  4. R. P. Feynman: Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  5. For a few historical remarks see e.g. D. Derbes: Am. J. Phys. 64, 881 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. A. M. Dirac: Phys. Zs. Sowjetunion 3, 64 (1933)

    MATH  Google Scholar 

  7. see e.g. E. Nelson, J. Math. Phys. 5, 332 (1964), Appendix B

    Article  ADS  MATH  Google Scholar 

  8. F. Langouche, D. Roekaerts, E. Tirapegui: Functional Integration and Semiclassical Expansions, Mathematics and Its Applications Vol. 10 (D. Reidel 1982)

    Google Scholar 

  9. W. Janke, H. Kleinert: Lett. Nuovo Cim. 25, 297 (1979)

    Article  Google Scholar 

  10. M. Goodman: Am. J. Phys. 49, 843 (1981)

    Article  ADS  Google Scholar 

  11. A. Auerbach, L. S. Schulman: J. Phys. A 30, 5993 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. I. S. Gradshteyn, I. M. Rhyzik: Table of Integrals, Series, and Products (Academic Press 1980)

    Google Scholar 

  13. V. P. Maslov, M. V. Fedoriuk: Semi-classical approximation in quantum mechanics. Mathematical Physics and Applied Mathematics Vol. 7, ed. by M. Flato et al. (D. Reidel 1981)

    Google Scholar 

  14. P. A. Horváthy: Int. J. Theor. Phys. 18, 245 (1979)

    Article  Google Scholar 

  15. D. Rohrlich: Phys. Lett. A 128, 307 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. S. Marinov: Phys. Rep. 60, 1 (1980), Chap. 3.3

    Article  ADS  MathSciNet  Google Scholar 

  17. see e.g. M. Brack, R. K. Bhaduri: Semiclassical Physics, Frontiers in Physics Vol. 96 (Addison-Wesley 1997)

    Google Scholar 

  18. J. H. van Vleck: Proc. Natl. Acad. Sci. USA 14, 178 (1928)

    Article  ADS  MATH  Google Scholar 

  19. C. Morette: Phys. Rev. 81, 848 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. W. Pauli: Selected Topics in Field Quantization, Pauli Lectures on Physics Vol. 6, ed. by C. P. Enz (Dover 2000)

    Google Scholar 

  21. N. Wiener: J. Math. Phys. M.I.T. 2, 131 (1923)

    Google Scholar 

  22. A. O. Caldeira, A. J. Leggett: Phys. Rev. Lett. 46, 211 (1981)

    Article  ADS  Google Scholar 

  23. A. O. Caldeira, A. J. Leggett: Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  ADS  Google Scholar 

  24. V. B. Magalinskiî: Zh. Eksp. Teor. Fiz. 36, 1942 (1959) [Sov. Phys. JETP 9, 1381 (1959)]

    Google Scholar 

  25. I. R. Senitzky: Phys. Rev. 119, 670 (1960); 124, 642 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G. W. Ford, M. Kac, P. Mazur: J. Math. Phys. 6, 504 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. P. Ullersma: Physica 32, 27, 56, 74, 90 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Zwanzig: J. Stat. Phys. 9, 215 (1973)

    Article  ADS  Google Scholar 

  29. P. C. Hemmer, L. C. Maximon, H. Wergeland: Phys. Rev. 111, 689 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. P. Hänggi: ‘Generalized Langevin Equations: A Useful Tool for the Perplexed Modeller of Nonequilibrium Fluctuations?’. In: Lecture Notes in Physics Vol. 484, ed. by L. Schimansky-Geier, T. Pöschel (Springer, Berlin 1997) pp. 15–22

    Google Scholar 

  31. V. Hakim, V. Ambegaokar: Phys. Rev. A 32, 423 (1985)

    Article  ADS  Google Scholar 

  32. H. Grabert, P. Schramm, G.-L. Ingold: Phys. Rev. Lett. 58, 1285 (1987)

    Article  ADS  Google Scholar 

  33. R. P. Feynman, F. L. Vernon, Jr.: Ann. Phys. (N.Y.) 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Grabert, P. Schramm, G.-L. Ingold: Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Hanke, W. Zwerger: Phys. Rev. E 52, 6875 (1995)

    Article  ADS  Google Scholar 

  36. M. Abramowitz, I. A. Stegun (eds.): Handbook of mathematical functions (Dover 1972)

    Google Scholar 

  37. G.-L. Ingold, R. A. Jalabert, K. Richter: Am. J. Phys. 69, 201 (2001)

    Article  ADS  Google Scholar 

  38. H. Grabert, U. Weiss, P. Talkner: Z. Phys. B 55, 87 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  39. H. B. Callen, T. A. Welton: Phys. Rev. 83, 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R. Kubo: J. Phys. Soc. Japan 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Kubo: Rep. Progr. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  42. R. Loudon: The Quantum Theory of Light (Oxford University Press 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ingold, GL. (2002). Path Integrals and Their Application to Dissipative Quantum Systems. In: Buchleitner, A., Hornberger, K. (eds) Coherent Evolution in Noisy Environments. Lecture Notes in Physics, vol 611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45855-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45855-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44354-4

  • Online ISBN: 978-3-540-45855-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics