Skip to main content

A New Criterion for Normal Form Algorithms

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1719))

Abstract

In this paper, we present a new approach for computing normal forms in the quotient algebra A of a polynomial ring R by an ideal I. It is based on a criterion, which gives a necessary and sufficient condition for a projection onto a set of polynomials, to be a normal form modulo the ideal I. This criterion does not require any monomial ordering and generalizes the Buchberger criterion of S-polynomials. It leads to a newa lgorithm for constructing the multiplicative structure of a zero- dimensional algebra. Described in terms of intrinsic operations on vector spaces in the ring of polynomials, this algorithm extends naturally to Laurent polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Alonso, E. Becker, M.F. Roy, and T. Wörmann. Zeros, multiplicities and idempotents for zero dimensional systems. In L. González-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Applications, volume 143 of Prog. in Math., pages 1–15. Birkhäuser, Basel, 1996.

    Google Scholar 

  2. W. Auzinger and H.J. Stetter. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Proc. Intern.Conf. on Numerical Math., volume 86 of Int. Series of Numerical Math, pages 12–30. Birkhäuser Verlag, 1988.

    Google Scholar 

  3. T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases. A Computational Approach to Commutative Algebra, volume 141 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  4. D. Bondyfalat, B. Mourrain, and V.Y. Pan.Controlled iterative methods for solving polynomial systems. In Proc. ISSAC, pages 252–259. ACM Press., 1998.

    Google Scholar 

  5. B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (German). PhD thesis, Math. Inst, Univ. of Innsbruck, Austria, 1965. (also in Aequationes Math. 4/3, 1970).

    Google Scholar 

  6. B. Buchberger. Gröbner bases: An algebraic method in ideal theory. In N.K. Bose, editor, Multidimensional System Theory, pages 184–232. Reidel Publishing Co., 1985.

    Google Scholar 

  7. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics.Springer, NewY ork, 1992.

    MATH  Google Scholar 

  8. D. Eisenbud. Commutative Algebra with a view toward Algebraic Geometry, volume 150 of Graduate Texts in Math. Springer-Verlag, 1994.

    Google Scholar 

  9. I.Z. Emiris and B. Mourrain. Matrices in Elimination Theory. J. of Symbolic Computation, 28(1&2):3–44, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero dimensional groebner bases by change of ordering. J.S.C, 16(4):329–344, 1993.

    MATH  MathSciNet  Google Scholar 

  11. Faugère J.C. A newe fficient algorithm for computing Gröbner Basis (F4). J. of Pure and Applied Algebra, 139:61–88, 1999.

    Article  MATH  Google Scholar 

  12. M. Giusti, J. Heintz, J.E. Morais, and L.M. Pardo. When Polynomial Equation Systems can be “Solved” Fast ? In AAECC’95, LNCS.Springer-Verlag,1995.

    Google Scholar 

  13. D. Lazard. Résolution des systémes d’ équations algébriques. Theo. Comp. Science, 15:77–110, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  14. F.S. Macaulay. On the Resolution of a given Modular System into Primary Systems Including some Properties of Hilbert Numbers. Proc. London Math. Soc., pages 66–121, 1912.

    Google Scholar 

  15. H. M. Möller. Systems of algebraic equations solved by means of endomorphisms. Lect. Notes in Comp. Sci., 673:43–56, 1993.

    Google Scholar 

  16. B. Mourrain. Computing isolated polynomial roots by matrix methods. J. of Symbolic Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, 26(6):715–738, Dec. 1998.

    MATH  MathSciNet  Google Scholar 

  17. B. Mourrain and V.Y. Pan. Asymptotic acceleration of solving multivariate polynomial systems of equations. In Proc. STOC, pages 488–496. ACM Press., 1998.

    Google Scholar 

  18. B. Mourrain and V.Y. Pan. Multivariate polynomials,duality and structured matrices. J. of Complexity, 1999.To appear.

    Google Scholar 

  19. F. Pauer and S. Zampieri. Groebner Bases with Respect to Generalized Term Orders and their Application to the Modelling Problem. J.S.C., 21:155–168, 1996.

    MATH  MathSciNet  Google Scholar 

  20. J. Renegar. On the computational complexity and geometry of the first order theory of reals (I, II, III). J. Symbolic Computation, 13(3):255–352, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Rouillier. Algorithmes efficaces pour l’étude des zéros réels des systèmes polynomiaux. PhD thesis, Université de Rennes, 1996.

    Google Scholar 

  22. B. Sturmfels. Gröbner bases of toric varieties.Tôhoku Math. J.,43:249–261,1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mourrain, B. (1999). A New Criterion for Normal Form Algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46796-3_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-46796-3_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66723-0

  • Online ISBN: 978-3-540-46796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics