Skip to main content

Dynamic Representations of Sparse Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1663))

Included in the following conference series:

Abstract

We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries.

The data structure supports adjacency queries in worst case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity.

Partially supported by the ESPRIT Long Term Research Program of the EU under contract 20244 (project ALCOM-IT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srinivasa R. Arikati, Anil Maheshwari, and Christos D. Zaroliagis. Efficient computation of implicit representations of sparse graphs. Discrete Applied Mathematics, 78:1–16, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. Boliong Chen, Makoto Matsumoto, Jian Fang Wang, Zhong Fu Zhang, and Jian Xun Zhang. A short proof of Nash-Williams‘theorem for the arboricity of a graph. Graphs Combin., 10(1):27–28, 1994.

    Article  MathSciNet  Google Scholar 

  3. Chuang, Garg, He, Kao, and Lu. Compact encodings of planar graphs via canonical orderings and multiple parentheses. In ICALP: Annual International Colloquium on Automata, Languages and Programming, 1998.

    Google Scholar 

  4. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms, chapter 23. MIT Press, Cambridge, Mass., 1990.

    MATH  Google Scholar 

  5. Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1) worst case access time. Journal of the Association for Computing Machinery, 31(3):538–544, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  6. Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algorithms for matroid sums and applications. Algorithmica, 7:465–497, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. Grossi and Lodi Simple planar graph partition into three forests. Discrete Applied Mathematics, 84:121–132, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM Journal on Discrete Mathematics, 5(4):596–603, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and deterministic dynamic dictionaries. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 556–563, 1998.

    Google Scholar 

  10. J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses, static trees and planar graphs. In 38th Annual Symposium on Foundations of Computer Science, pages 118–126, 20-22 October 1997.

    Google Scholar 

  11. C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. The Journal of the London Mathematical Society, 36:445–450, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. The Journal of the London Mathematical Society, 39:12, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. C. Picard and M. Queyranne. A network ow soloution to some non-linear 0-1 programming problems, with applications to graph theory. Networks, 12:141–160, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Talamo and P. Vocca. Compact implicit representation of graphs. In Graph-Theoretic Concepts in Computer Science, volume 1517 of Lecture Notes in Computer Science, pages 164–176, 1998.

    Chapter  Google Scholar 

  15. G. Turan. Succinct representations of graphs. Discrete Applied Math, 8:289–294, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jan van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity, pages 525–631. North-Holland Publ. Comp., Amsterdam, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Fagerberg, R. (1999). Dynamic Representations of Sparse Graphs. In: Dehne, F., Sack, JR., Gupta, A., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1999. Lecture Notes in Computer Science, vol 1663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48447-7_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-48447-7_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66279-2

  • Online ISBN: 978-3-540-48447-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics