Skip to main content

Improving the accuracy of central difference schemes

  • Contributed Papers
  • Conference paper
  • First Online:
11th International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 323))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W., Kyle, Thomas, J. L., van Leer, B., Comparison of Finite Volume Flux Vector Splittings for the Euler Equations, AIAA J., Vol. 24, pp. 1453–1460 (1986).

    Google Scholar 

  2. Caughey, D. A., Turkel, E., Effects of Numerical Dissipation on Finite-Volume Solutions of Compressible Flow Problems, AIAA-88-0621 (1988).

    Google Scholar 

  3. Chima, R. B., Turkel, E., Schaffer, S., Comparison of Three Explicit Multigrid Methods for the Euler and Navier-Stokes Equations, AIAA-87-0602 (1987).

    Google Scholar 

  4. Harten, A., The Artificial Compression Method for Computation of Shocks and Contact Discontinuities III. Self-Adjusting Hybrid Schemes, Math. Comput., Vol. 32, pp. 363–389 (1978).

    Google Scholar 

  5. Jameson, A., Schmidt, W., Turkel, E., Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes, AIAA-81-1259 (1981).

    Google Scholar 

  6. Osher, S., Tadmor, E., On the Convergence of Difference Approximations to Scalar Conservation Laws, Math. Comput., Vol. 50, pp. 19–51 (1988).

    Google Scholar 

  7. Roe, P. L., Approximate Riemann Solvers Parametric Vectors and Difference Schemes, J. Comput. Phys., Vol. 43, pp. 357–372 (1981).

    Google Scholar 

  8. Swanson, R. C., Turkel, E., Artificial Dissipation and Central Difference Schemes for the Euler and Navier-Stokes Equations, AIAA 8th CFD Conference, AIAA-87-1107-CP (1987).

    Google Scholar 

  9. Tadmor, E., Convenient Total Variation Diminishing Conditions for Nonlinear Differences Schemes, SIAM J. Numer. Anal., to appear.

    Google Scholar 

  10. Turkel, E., Acceleration to a Steady State for the Euler Equations, Numerical Methods for the Euler equations of Fluid Dynamics, pp. 281–311, F. Angrand, et al. (editors), SIAM, Philadelphia (1985).

    Google Scholar 

  11. Turkel, E., van Leer, B., Flux Vector Splitting and Runge-Kutta Methods for the Euler Equations, 9th Inter. Conf. Numer. Methods Fluid Dynamics, Springer-Verlag Lecture Notes Physics, Vol. 208, pp. 566–570 (1984).

    Google Scholar 

  12. van Leer, B., Towards the Ultimate Conservative Difference Scheme, II. Monotonicity and Conservation Combined in a Second-Order Scheme, J. Comput. Phys., Vol. 14, pp. 361–370 (1974).

    Google Scholar 

  13. Yee, H. C., Upwind and Symmetric Shock-Capturing Schemes, NASA TM 89464 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. L. Dwoyer M. Y. Hussaini R. G. Voigt

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Turkel, E. (1989). Improving the accuracy of central difference schemes. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) 11th International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51048-6_97

Download citation

  • DOI: https://doi.org/10.1007/3-540-51048-6_97

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51048-2

  • Online ISBN: 978-3-540-46141-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics