Skip to main content

Integer relations among algebraic numbers

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1989 (MFCS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 379))

Abstract

A vector m=(m 1,...,m n ) ∈ Z n \ {0} is called an integer relation for the real numbers α 1,...,α n , if Σα i m i =0 holds. We present an algorithm that when given algebraic numbers α 1,...,α n and a parameter ɛ either finds an integer relation for α 1,...,α n or proves that no relation of euclidean length shorter than 1/ɛ exists. Each algebraic number is assumed to be given by its minimal polynomial and by a rational approximation precise enough to separate it from its conjugates.

Our algorithm uses the Lenstra-Lenstra-Lovász lattice basis reduction technique. It performs

$$poly \left( {log 1/\varepsilon ,n, log max_i height\left( {\alpha _i } \right), \left[ {Q\left( {\alpha _1 ,...,\alpha _n } \right):} \right]Q} \right)$$

bit operations. The straightforward algorithm that works with a primitive element of the field extension Q(α 1,...,α n ) of Q would take poly (n, log maxi height(α i ), Π i=1n degree (α i )) bit operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai, B. Just, F. Meyer auf der Heide, On the Limits of Computations with the Floor Function, Inf. Comput. 78, 2 (1988), 99–107

    Google Scholar 

  2. G. Bergman, Notes on Ferguson and Forcade's Generalized Euclidean Algorithm, preprint, Dept. of Math. Univ. California, Berkeley (1980)

    Google Scholar 

  3. B. Buchberger, G. Collins, R. Loos (Eds.), Computer Algebra. Symbolic and Algebraic Computation, Springer, Wien / New York (1982)

    Google Scholar 

  4. V. Brun, En generalisation av kjedebroken I+II, Skr. Vid. Selsk. Kristiana, Mat. Nat. Kl. 6 (1919), 1–29 and 6 (1920), 1–24

    Google Scholar 

  5. H. Ferguson, R. Forcade, Generalization of the Euclidean Algorithm for Real Numbers to All Dimensions Higher than Two, Bull. Am. Math. Soc., 1, 6 (1979), 912–914

    Google Scholar 

  6. H. Ferguson, R. Forcade, Multidimensional Euclidean Algorithms, J. Reine Angew. Math. 334 (1982), 171–181

    Google Scholar 

  7. G. Fischer, R. Sacher, Einführung in die Algebra, Teubner Stuttgart (1983)

    Google Scholar 

  8. J. Hastad, B. Just, J. Lagarias, C.P. Schnorr, Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers, to appear in Siam J. Comput., prelim. version in Proc. of STACS'86, Springer Lecture Notes in Comput. Sci. 210 (1986), 105–118

    Google Scholar 

  9. C.G.J. Jacobi, Allgemeine Theorie der kettenbruchähnlichen Algorithmen, J. Reine Angew. Math. 69 (1868), 29–64

    Google Scholar 

  10. R. Kannan, Improved Algorithms for Integer Programming and Related Problems, 15th ACM Symp. on Theory of Computing (1983), 193–206

    Google Scholar 

  11. R. Kannan, A.K. Lenstra, L. Lovász, Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers, Math. Comput. 50, 182 (1988), 235–250

    Google Scholar 

  12. J. Lagarias, Computational Complexity of Simultaneous Diophantine Approximation Problems, 23rd Ann. Symp. on the Foundations of Computer Science (1982), 32–39

    Google Scholar 

  13. A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring Polynomials with Rational Coefficients, Math. Ann. 261 (1982), 513–534

    Google Scholar 

  14. M. Mignotte, M. Waldschmidt, Linear Forms in Two Logarithms and Schneider's Method, Math. Ann. 231 (1978), 241–267

    Google Scholar 

  15. V. Pan, Sequential and Parallel Complexity of Approximate Evaluation of Polynomial Zeros, Comput. Math. Applic. 14, 8 (1987), 591–622

    Google Scholar 

  16. O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1–76

    Google Scholar 

  17. C.P. Schnorr, A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms, Theor. Comput. Sci.53 (1987), 201–224

    Google Scholar 

  18. C.P. Schnorr, A More Efficient Algorithm for Lattice Basis Reduction, J. Algorithms 9 (1988), 47–62

    Google Scholar 

  19. A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation and by an Improved Basis Reduction Algorithm, Proc. of 11th ICALP Antwerpen, Lecture Notes in Comput. Sci. 172 (1984)

    Google Scholar 

  20. G. Szekeres, Multidimensional Continued Fractions, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970), 113–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antoni Kreczmar Grazyna Mirkowska

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Just, B. (1989). Integer relations among algebraic numbers. In: Kreczmar, A., Mirkowska, G. (eds) Mathematical Foundations of Computer Science 1989. MFCS 1989. Lecture Notes in Computer Science, vol 379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51486-4_78

Download citation

  • DOI: https://doi.org/10.1007/3-540-51486-4_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51486-2

  • Online ISBN: 978-3-540-48176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics