Skip to main content

The potential and limitations of direct and large eddy simulations

  • Session Four
  • Conference paper
  • First Online:
Whither Turbulence? Turbulence at the Crossroads

Part of the book series: Lecture Notes in Physics ((LNP,volume 357))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADRIAN, R.J. & MOIN, P. 1988 Organized turbulent structure; homogeneous shear flow. J. Fluid Mech. 190 531–559.

    Google Scholar 

  • ASHURST, W.T., CHEN, J.Y. & ROGERS, M.M. 1987 Pressure gradient alignment with strain rate and scalar gradient in simulated Navier-Stokes turbulence. Phys. Fluids 30, 3293–3294.

    Article  Google Scholar 

  • ASHURST, W.T., KERSTEIN, A.R., KERR, R.M. & GIBSON, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353.

    Article  Google Scholar 

  • BARDINa J., Ferziger, J.H. & REYNOLDS, W.C. 1980 Improved subgrid scale models for large eddy simulation. AIAA paper 80–1357.

    Google Scholar 

  • BARDINA, J., FERZIGER, J.H. & REYNOLDS, W.C. 1983 Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Dept. of Mech. Engrg. Rept. TF-19, Stanford U., Stanford, California.

    Google Scholar 

  • BARDINA, J., FERZIGER, J.H. & ROGALLO, R.S. 1985 Effect of rotation on isotropic turbulence; computation and modelling. J. Fluid Mech. 154, 321–336.

    Google Scholar 

  • BORIS, J.P. 1989 New directions in computational fluid dynamics. Ann. Rev. Fluid Mech. 21, 345–385.

    Article  Google Scholar 

  • BORIS, J.P. & ORAN, E. 1988 The numerical simulation of compressive and reactive turbulence structures. Proc. Joint U.S./Fr. Workshop Turb. React. Flows, Rouen, Ed. B.G. Murthy & R. Borghi, Springer-Verlag, in press.

    Google Scholar 

  • BREIDENTHAL, R. 1981 Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1–24.

    Google Scholar 

  • BUELL, J.C. & HUERRE, P. 1988 Inflow/outflow boundary conditions and global dynamics of spatial mixing layers. In Studying Turbulence Using Numerical Simulation Databases-II. Proc. Summer Program 1988, Center for Turbulence Research, Stanford U., 19–27.

    Google Scholar 

  • CAIN, A.B., FERZIGER, J.H. & REYNOLDS, W.C. 1984 Discrete orthogonal function expansion for nonuniform grids using the fast Fourier transform. J. Comp. Phys. 56, 272–286.

    Article  Google Scholar 

  • CHASNOV, J. 1989 (private communication), Columbia U.

    Google Scholar 

  • CLARK, R.A., FERZIGER, J.H. & REYNOLDS, W.C. 1979 Evaluation of sub-grid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16.

    Google Scholar 

  • COLEMAN, G.N., FERZIGER, J.H. & SPALART, P.R. 1989 A numerical study of the turbulent Ekman Layer. J. Fluid Mech., to appear.

    Google Scholar 

  • DEARDORFF, J.W. 1970 A-numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480.

    Google Scholar 

  • DOMARADZKI, J.A. & ROGALLO, R.S. 1988 Energy transfer in isotropic turbulence at low Reynolds numbers. In Studying Turbulence Using Numerical Simulation Databases-II. Proc. Summer Program 1988, Center for Turbulence Research, Stanford U., Report CTR-S88, 169-174.

    Google Scholar 

  • EL-TAHRY, S., RUTLAND, C.J., FERZIGER, J.H. & ROGERS, M.M. 1987 Premixed turbulent flame calculation. In Studying Turbulence Using Numerical Simulation Databases. Proc. Summer Program 1987, Center for Turbulence Research, Stanford U., Report CTR-S87, 121-132.

    Google Scholar 

  • ESWARAN, V. & POPE, S.B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506–520.

    Article  Google Scholar 

  • FEIEREISEN W.J., REYNOLDS, W.C. & FERZIGER, J.H. 1981 Simulation of compressible turbulence. Dept. of Mech. Engrg. Rept. TF-13, Stanford U., Stanford, California.

    Google Scholar 

  • GERMANO, M. 1986a Differential filters for the large eddy simulation of turbulent flows. Phys. Fluids 29, 1755–1757.

    Article  Google Scholar 

  • GERMANO, M. 1986b A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations.Phys. Fluids 29, 2323–2324.

    Article  Google Scholar 

  • GERZ, T., SCHUMANN, U. & ELGOBASHI, S.E. 1988 Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., to appear.

    Google Scholar 

  • GRÖTZBACH, G. 1983 Direct and large eddy simulation of turbulent channel flows. In Encyclopedia of Fluid Mechanics, 6 (Ed. N.P. Cheremisinoff), Gulf Publishing, West Orange.

    Google Scholar 

  • HOLT, S.E., KOSEFF, J.R. & FERZIGER, J.H. 1989 The evolution of turbulence in the presence of mean shear and stable stratification. Seventh Symp. Turb. Shear Flows, Stanford (to be presented).

    Google Scholar 

  • HORIUTI, K. 1985 Large eddy simulation of turbulent channel flow by 1-equation model. In Proc. Int. Symp. Computational Fluid Dynamics, Tokyo.

    Google Scholar 

  • HORIUTI, K. & YOSHIZAWA, A. 1985 Large eddy simulation of turbulent channel flow by 1-equation model. In Proc. EUROMECH Colloquium No. 199 (eds. U. Schumann and R. Friedrich), Vieweg and Sohn, Braunschweig.

    Google Scholar 

  • HUERRE, P. & MONKEWITZ, P.A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151–168.

    Google Scholar 

  • HUNT, J.C.R. 1988 Studying turbulence using direct numerical simulation: Center for Turbulence Research NASA Ames/Stanford Summer Programme. J. Fluid Mech. 190, 375–392.

    Google Scholar 

  • KEEFE, L. & MOIN, P. 1989 Applications of chaos theory to shear flow turbulence. Abstracts for AAAS meeting Jan 14-19 1989, San Francisco.

    Google Scholar 

  • KIM, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 2088–2097.

    Article  Google Scholar 

  • KIM, J. & MOIN, P. 1987 Transport of passive scalars in a turbulent channel flow. Proc. Sixth Symp. Turb. Shear Flows, Toulouse.

    Google Scholar 

  • KIM, J. & MOIN, P. 1989 Active turbulence control in a wall bounded flow using direct numerical simulation. Submitted to IUTAM Symposium on Structure of Turbulence and Drag reduction, July 1989, Zurich, Switzerland.

    Google Scholar 

  • KIM, J., MOIN, P. & MOSER, R.D. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

    Google Scholar 

  • LAURENCE, G. 1985 Advective formulation of large eddy simulation for engineering flow. In Proc. EUROMECH Colloquium No. 199 (eds. U. Schumann and R. Friedrich), Vieweg and Sohn, Braunschweig.

    Google Scholar 

  • LEE, M.J., KIM, J. & MOIN, P. 1986 Turbulence structure at high shear rate. Proc. Sixth Symp. Turb. Shear Flows, Toulouse.

    Google Scholar 

  • LEE, M.J. & REYNOLDS, W.C. 1985 Numerical experiments on the structure of homogeneous turbulence. Dept. of Mech. Engrg. Rept. TF-24, Stanford U., Stanford, California.

    Google Scholar 

  • LELE, S.K. 1989 Direct Numerical Simulation of Compressible Free Shear Flows. AIAA89-0374, Reno Meeting, January 9–12.

    Google Scholar 

  • LEONARD, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18A, 237–248.

    Google Scholar 

  • LEONARD, A.D., HILL, J.C., MAHALINGHAM, S. & FERZIGER, J.H. 1988 Analysis of homogeneous turbulent reacting flows. In Studying Turbulence Using Numerical Simulation Databases-II. Proc. Summer Program 1988, Center for Turbulence Research, Stanford U., Report CTR-S88, 243–255.

    Google Scholar 

  • LEITH, C.E. 1969 Numerical simulation of turbulent flows. In Properties of Matter Under Unusual Conditions, Interscience, New York, 267–271.

    Google Scholar 

  • LEITH, C.E. 1978 Objective methods for weather prediction. Ann. Rev. Fluid Mech. 10, 107–128.

    Article  Google Scholar 

  • LILLY, D.K. 1967 The representation of small-scale turbulence in numerical experiments. In Proc. IBM Scientific Computing Symposium on Environmental Sciences, IBM, White Plaines, NY.

    Google Scholar 

  • LILLY, D.K. 1989 The length scale for sub-grid-scale parameterization with anisotropic resolution. Preprint, Center for Turbulence Research, Stanford.

    Google Scholar 

  • LOWERY, P.S. & REYNOLDS, W.C. 1986. Numerical simulation of a spatially-developing, forced, plane mixing layer. Dept. of Mech. Engrg. Rept. TF-26, Stanford U., Stanford, California.

    Google Scholar 

  • LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation, ed. A.M. Yaglom & V.I. Tatarsky, NAUKA, Moscow, 166–178.

    Google Scholar 

  • MANSOUR, N.N. 1989 Private communication, NASA/Ames Research center.

    Google Scholar 

  • MANSOUR, N.N., KIM, J. & MOIN, P. 1988 Reynolds-stress and dissipation rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44.

    Google Scholar 

  • MASON, P.J. 1987 Large eddy simulation of a convective atmospheric boundary layer. Proc. Sixth. Symp. Turb. Shear Flows, Toulouse; to appear, Springer-Verlag.

    Google Scholar 

  • MASON, P.J. & CALLEN, N.S. 1986 On the magnitude of the subgrid-scale eddy coefficient in large eddy simulation of turbulent channel flow. J. Fluid Mech. 162, 439–462.

    Google Scholar 

  • MASON, P.J. & THOMSON, D.J. 1987 Large-eddy simulations of the neutral-static stability planetary boundary layer. Q. J. R. Meteorol. Soc. 113, 413–443.

    Article  Google Scholar 

  • MELANDER, M.V. & HUSSAIN, F. 1988 Cut-and-connect of two antiparallel vortex tubes. In Studying Turbulence Using Numerical Simulation Databases-II. Proc. Summer Program 1988, Center for Turbulence Research, Stanford U., Report CTR-S88, 257–286.

    Google Scholar 

  • METCALFE, R.W., ORSZAG, S.A., BRACHET, M., MENON, S. & RILEY, J.J. 1987 Secondary instability of a temporally growing mixing layer. J. Fluid Mech. 184, 207–244.

    Google Scholar 

  • MOENG, C.H. 1986 Large eddy simulation of stratus-topped boundary layer: Part I, Structure and budgets. J. Atmos. Sci. 43, 2886–2900.

    Article  Google Scholar 

  • MOENG, C.H. & WYNGAARD, J.C. 1986 An analysis of closures for pressure-scalar covariances in the convective boundary layer. J. Atmos. Sci. 43, 2499–2531.

    Article  Google Scholar 

  • MOIN, P. & KIM, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–378.

    Google Scholar 

  • MOIN, P. & KIM, J. 1985 The structure of the velocity field in turbulent channel flow. part I. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441–464.

    Google Scholar 

  • MOIN, P. & MOSER, R.D. 1989 Characteristic eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, to appear.

    Google Scholar 

  • MOIN, P., SHIH, T.S., DRIVER, D. & MANSOUR, N.N 1989 Numerical simulation of a three-dimensional turbulent boundary layer. AIAA-89-0873, Reno, Nevada.

    Google Scholar 

  • MOIN, P. & SPALART, P.R. 1989 Contributions of numerical simulation data bases to the physics, modeling, and measurement of turbulence. In Advances in Turbulence, Ed. George and Arndt, Hemisphere, 11-38 (also NASA TM 100022).

    Google Scholar 

  • MORTAZAVI, M., KOLLMAN, W. & SQUIRES, K. 1987 A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations. In Studying Turbulence Using Numerical Simulation Databases. Proc. Summer Program 1987, Center for Turbulence Research, Stanford U., Report CTR-887, 121–132.

    Google Scholar 

  • MOSER, R.D. 1988 Statistical analysis of near-wall structures in turbulent channel flow. NASA TM 100092.

    Google Scholar 

  • MOSER, R.D. & MOIN, P. 1987 Direct numerical simulation of curved channel flow. J. Fluid Mech. 175, 479–510.

    Google Scholar 

  • NIEDERSCHULTE, M.A. 1988 Turbulent flow through a rectangular channel. P.D. Thesis, Department of Chemical Engineering, Univ. Illinois, Urbana.

    Google Scholar 

  • NIEUWSTADT, F.T.M. & De VALK, P.J.P.M.M. 1987 A large eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environm. 21, 2573–2587.

    Article  Google Scholar 

  • ORSZAG, S.A. & PATERA, A.T. 1984 A spectral element method for fluid dynamics; laminar flow in a channel expansion. J. Comp. Phys. 54, 468.

    Article  Google Scholar 

  • ORSZAG, S.A. & PATTERSON, G.S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79.

    Article  Google Scholar 

  • PETERSON, V.L., KIM, J., HOLST, T., DEIWERT, G.S., COOPER, D.M., WATSON, A.B. & BAILEY, F.R. 1989 Supercomputer requirements for selected disciplines important to aerospace. J. IEEE, to appear.

    Google Scholar 

  • PIOMELLI, U., FERZIGER, J.H. & MOIN, P.1988 Models for large eddy simulation of turbulent channel flows including transpiration. Dept. of Mech. Engrg. Rept. TF-32, Stanford U., Stanford, California.

    Google Scholar 

  • PIOMELLI, U., MOIN, P. & FERZIGER, J.H. 1988 Model consistency in the large eddy simulation of turbulent channel flow. Phys. Fluids 31, 1884–1891.

    Article  Google Scholar 

  • RAI, M.M. & MOIN, P. 1989 Direct simulation of turbulent flows using finite-difference schemes. AIAA-89-0369, Reno, Nevada. REYNOLDS, W.C. & SHIH, T.S. 1989 Rapid distortion of anisotropic homogeneous turbulence. Unpublished work notes, Center for Turbulence Research, Stanford.

    Google Scholar 

  • RILEY, J.J., METCALFE, R.W. & ORSZAG, S.A. 1986 Direct numerical simulation of chemically reacting turbulent mixing layers. Phys. Fluids 29, 406–422.

    Article  Google Scholar 

  • ROBINSON, S.K., KLINE, S.J. & SPALART, P.R. 1988 Quasi-coherent structures in the turbulent boundary layer: Part II. Verification and new information from a numerically simulated flat-plate layer. Zoran P. Zaric Memorial International Seminar on nearWall Turbulence, Dubrovnik, Yugoslavia, May 16-20.

    Google Scholar 

  • ROGALLO, R.S. 1981 Numerical experiments in homogeneous turbulence. NASA TM81315.

    Google Scholar 

  • ROGALLO, R.S. & MOIN, P. 1984 Numerical simulations of turbulent flows. Ann. Rev. Fluid Mech. 16, 99–138.

    Article  Google Scholar 

  • ROGERS, M.M, MANSOUR, N.N. & REYNOLDS, W.C. 1989 An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech., to appear.

    Google Scholar 

  • ROGERS, M.M & MOIN, P. 1987a The structure of the voriticity field in homogeneous turbulent flow. J. Fluid Mech. 176, 33–66.

    Google Scholar 

  • ROGERS, M.M. & MOIN, P. 1987b Helicity fluctuations in incompressible turbulent flows, Phys. Fluids 30, 2662–2670.

    Article  Google Scholar 

  • ROGERS, M.M., MOIN, P. & REYNOLDS, W.C. 1986 The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Dept. of Mech. Engrg. Rept. TF-25, Stanford U., Stanford, California.

    Google Scholar 

  • ROGERS, M.M. & MOSER, R.D. 1989 Private communication, NASA/Ames Research Center.

    Google Scholar 

  • SANDHAM, N.D. & REYNOLDS, W.C. 1987 Some inlet plane effects on the numerically simulated spatially-developing mixing layer. Proc. Sixth Symp. Turb. Shear Flows, Toulouse, France, Springer-Verlag, in press.

    Google Scholar 

  • SANDHAM, N.D. & REYNOLDS, W.C. 1989 The compressible mixing layer; linear theory and direct simulation. AIAA 89-0371, Reno, Nevada. SCHMIDT, H. & SCHUMANN, U. 1988 Coherent structure of the convective boundary layer derived from large-eddy simulations. DFVLR report IB-553 2/88, to appear in J. Fluid Mech..

    Google Scholar 

  • SCHUMANN, U. 1975 Subgrid scale model for finite difference simulation of turbulent flows in plane channels and annuli. J. Comp. Phys. 18, 376–404.

    Article  Google Scholar 

  • SCHUMANN, U. 1988 Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. DFVLR report IB-553 2388, submitted to Atmospheric Environment.

    Google Scholar 

  • SCHUMANN, U. & FRIEDRICH, R. 1987 On direct and large eddy simulation of turbulence. In Advances in Turbulence, Springer-Verlag, 88–104.

    Google Scholar 

  • SCHUMANN, U., HAUF, T. HÖLLER, H., SCHMIDT, H. & VOLKERT, H. 1987 A mesoscale model for the simulation of turbulence, clouds, and flow over mountains; formulation and validation examples. Beitr. Phys. Atmos. 60, 413–446.

    Google Scholar 

  • SCHUMANN, U. & PATTERSON, G.S. 1978 Numerical study of pressure and velocity fluctuations in nearly isotropic turbulence. J. Fluid Mech. 88, 711–735.

    Google Scholar 

  • SMAGORINSKI, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91, 99–164.

    Google Scholar 

  • SPALART, P.R. 1986 Numerical simulation of boundary layers; part 1; weak formulation and numerical method. NASA TM 88222.

    Google Scholar 

  • SPALART, P.R. 1988a Direct numerical simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 187, 61.

    Google Scholar 

  • SPALART, P.R. 1988b Direct numerical study of leading-edge contamination.AGARD Symposium on Fluid Dynamics of Three-dimensional Turbulent Shear Flow and Transition, Oct 3–6, Cesme, Turkey.

    Google Scholar 

  • SPALART, P.R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech., to appear.

    Google Scholar 

  • SPEZIALE, C.G. 1985 Galilean Invariance of subgrid-scale stress models. J. Fluid Mech. 156,55–62.

    Google Scholar 

  • SPEZIALE, C.G., ERLEBACHER, G., ZANG, T.A. & HUSSAINI, M.Y. 1988 The subgrid-scale modeling of compressible turbulence. Phys. Fluids 31, 940–942.

    Article  Google Scholar 

  • SPEZIALE, C.G., MANSOUR, N.N. & ROGALLO, R.S. 1987 Decay of turbulence in a rapidly rotating frame. In Studying Turbulence Using Numerical Simulation Databases. Proc. 1987 Summer Program, Center for Turbulence Research, Stanford U., Report CTR-S87, 205–212. TSUBOI, K., TAMURA, T. & KUWAHARA, K. 1989 Numerical study of vortex induced vibration of a circular cylinder in high Reynolds number flow. AIAA 89–0294, Reno, Nevada.

    Google Scholar 

  • YAKHOT, V. & ORSZAG, S.A. 1986 Renormalization group analysis of turbulence. I. Basic Theory. J. Scientific Computing 1, 3–51.

    Article  Google Scholar 

  • SPALART, P.R. 1988b Direct numerical study of leading-edge contamination. AGARD Symposium on Fluid Dynamics of Three-dimensional Turbulent Shear Flow and Transition, Oct 3-6, Cesme, Turkey.

    Google Scholar 

  • SPALART, P.R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech., to appear.

    Google Scholar 

  • SPEZIALE, C.G. 1985 Galilean Invariance of subgrid-scale stress models. J. Fluid Mech. 158, 55–62.

    Google Scholar 

  • SPEZIALE, C.G., ERLEBACHER, G., ZANG, T.A. & HUSSAINI, M.Y. 1988 The subgrid-scale modeling of compressible turbulence. Phys. Fluids 31, 940–942.

    Article  Google Scholar 

  • SPEZIALE, C.G., MANSOUR, N.N. & ROGALLO, R.S. 1987 Decay of turbulence in a rapidly rotating frame. In Studying Turbulence Using Numerical Simulation Databases. Proc. 1987 Summer Program, Center for Turbulence Research, Stanford U., Report CTR-S87, 205-212.

    Google Scholar 

  • TSUBOI, K., TAMURA, T. & KUWAHARA, K. 1989 Numerical study of vortex induced vibration of a circular cylinder in high Reynolds number flow. AIAA 89–0294, Reno, Nevada.

    Google Scholar 

  • YAKHOT, V. & ORSZAG, S.A. 1986 Renormalization group analysis of turbulence. I. Basic Theory. J. Scientific Computing 1, 3–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. Lumley

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Reynolds, W.C. (1990). The potential and limitations of direct and large eddy simulations. In: Lumley, J.L. (eds) Whither Turbulence? Turbulence at the Crossroads. Lecture Notes in Physics, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52535-1_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-52535-1_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52535-6

  • Online ISBN: 978-3-540-47032-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics