Skip to main content

Entropy production and nonequilibrium stationarity in quantum dynamical systems

  • Session III: Quantum Stochastic Processes
  • Conference paper
  • First Online:
Quantum Aspects of Optical Communications

Part of the book series: Lecture Notes in Physics ((LNP,volume 378))

Abstract

In statistical physics, Kubo's linear response theory is well known as the most effective method, in the linear-approximation regimes, of calculating transport coefficients which describe dissipative aspects in the macroscopic manifestations of microscopic quantum systems. From the viewpoint of the mutual relationship between the microscopic and macroscopic levels, it is clear that the response theory is essentially concerned with the information-theoretical problems. For lack of such key-concepts as entropy and/or entropy production, however, this theory has long been taken in physics merely as a calculational device, without the deep understanding of the reason for its general validity.

In this report, it is shown that the notion of entropy production as a generating function of various transport coefficients can be defined in a natural way with the aid of relative entropy. We carefully examine the nonlinear responses of quantum dynamical systems against almost-periodic perturbations with (countably) many frequencies in the general algebraic framework which is applicable to the systems with infinite degrees of freedom without the limitations of standard linear response theory. Then, the positivity of (time-averaged) entropy production expressing the dissipativity is proved on a general ground, and also the basis for the validity of linear approximation is clarified on the basis of time-scale change controlled by van Hove limit. By virtue of the methods of dilation/coarse graining, the parallelism becomes clear between the response theory in statistical physics and the theory of quantum measurements as well as of communication channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kubo, J. Phys. Soc. Japan 12 (1957), 570.

    Google Scholar 

  2. N. G. van Kampen, Physica Norvegica 5 (1971), 279.

    Google Scholar 

  3. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics, vol. 2 (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  4. I. Ojima, H. Hasegawa, and M. Ichiyanagi, J. Stat. Phys. 50 (1988), 633.

    Google Scholar 

  5. I. Ojima, J. Stat. Phys. 56 (1989), 203.

    Google Scholar 

  6. R. Haag, N. M. Hugenholtz and M. Winnink, Comm. Math. Phys. 5 (1967), 215.

    Google Scholar 

  7. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 2 (Springer-Verlag, Berlin, 1981)

    Google Scholar 

  8. M. Ichiyanagi, J. Phys. Soc. Japan 55 (1986), 2093.

    Google Scholar 

  9. H. Araki, Publ. RIMS, Kyoto Univ. 11 (1976), 809; 13 (1977), 173; A. Uhlmann, Comm. Math. Phys. 54 (1977), 21.

    Google Scholar 

  10. K. Yosida, Functional Analysis 6th ed. (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  11. J. Avron and B. Simon, Comm. Math. Phys. 82 (1981), 101; J. Bellissard, R. Lima and D. Testard, in Mathematics + Physics: Lectures on Recent Results, voll, L. Streit, ed. (World Scientific, Singapore, 1985.), and references cited therein.

    Google Scholar 

  12. N. Dunford and J. T. Schwartz, Linear Operators, Vol. I (Wiley-Interscience, New York, 1958); N. Bourbaki, Élements de Mathématique, Espaces Vectoriels Topologiques, 2nd ed. (Hermann, Paris, 1966).

    Google Scholar 

  13. J. Bellissard, private communication (1987); J. S. Howland, Math. Ann. 207(1974), 315; K. Yajima, J. Math. Soc. Japan 29 (1977), 729.

    Google Scholar 

  14. L. van Hove, Physica 21 (1955), 517.

    Google Scholar 

  15. L. van Hove, Physica 23 (1957), 441.

    Google Scholar 

  16. E. B. Davies, Comm. Math. Phys. 39 (1974), 91; Math. Ann. 219 (1976); 147; Ann. Inst. Henri Poincaré 11 (1975), 265.

    Google Scholar 

  17. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski and E. C. G. Sudarshan, Rep. Math. Phys. 13 (1978), 149, and references cited therein.

    Google Scholar 

  18. I. Ojima, in Quantum Field Theory, F. Mancini, ed. (Elsevier., 1986), p.443,; in Proceedings 2nd International Symposium on Foundations of Quantum Mechanics (Tokyo, 1986), M. Namiki, et al., eds.(Physical Society of Japan, Tokyo, 1987), p.91.

    Google Scholar 

  19. K. Hepp and E. Lieb, Helv. Phys. Acta 46 (1973), 573.

    Google Scholar 

  20. J. Lebowitz, Phys. Rev. 114 (1959), 1192; H. Hasegawa, T. Nakagomi, M. Mabuchi, and K. Kondo, J. Stat. Phys. 23 (1980), 281.

    Google Scholar 

  21. A. Connes, in Lecture Notes in Mathematics, No.725 (Springer-Verlag, Berlin, 1979), p.19; J. Renault, Lecture Notes in Mathematics, No.793 (Springer-Verlag, Berlin, 1980); J. Bellissard and D. Testard, preprint CPT-81/P.1311 (1981).

    Google Scholar 

  22. T. Masuda, Publ. RIMS, Kyoto Univ. 20 (1984), 929, 959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cherif Bendjaballah Osamu Hirota Serge Reynaud

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Ojima, I. (1991). Entropy production and nonequilibrium stationarity in quantum dynamical systems. In: Bendjaballah, C., Hirota, O., Reynaud, S. (eds) Quantum Aspects of Optical Communications. Lecture Notes in Physics, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53862-3_177

Download citation

  • DOI: https://doi.org/10.1007/3-540-53862-3_177

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53862-2

  • Online ISBN: 978-3-540-46366-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics